最短路径-Dijkstra算法(转载)
注意:以下代码 只是描述思路,没有测试过!!
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
3.算法代码实现:
const int MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
for(int i=; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用过该点
if(dist[i] == MAXINT)
prev[i] = -;
else
prev[i] = v0;
}
dist[v0] = ;
S[v0] = true;
for(int i=; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出当前未使用的点j的dist[j]最小值
for(int j=; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u保存当前邻接点中距离最小的点的号码
mindist = dist[j];
}
S[u] = true;
for(int j=; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //记录前驱顶点
}
}
}
}
4.算法实例
先给出一个无向图
用Dijkstra算法找出以A为起点的单源最短路径步骤如下
转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html
最短路径-Dijkstra算法(转载)的更多相关文章
- 网络最短路径Dijkstra算法
最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...
- 单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...
- 最短路径-Dijkstra算法与Floyd算法
一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1 ADE:2 ADCE:3 ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...
- 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )
数据结构实验之图论七:驴友计划 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...
- 最短路径——Dijkstra算法以及二叉堆优化(含证明)
一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...
- 有向网络(带权的有向图)的最短路径Dijkstra算法
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...
- Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...
- 图的最短路径-----------Dijkstra算法详解(TjuOj2870_The Kth City)
做OJ需要用到搜索最短路径的题,于是整理了一下关于图的搜索算法: 图的搜索大致有三种比较常用的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 Dijkst ...
- 求两点之间最短路径-Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...
随机推荐
- box-shadow 边框样式
如下 box-shadow: 0 1px 3px 0 rgba(0,0,0,.2), 0 1px 1px 0 rgba(0,0,0,.14), 0 2px 1px -1px rgba(0,0,0,.1 ...
- 【Spring学习笔记-2】Myeclipse下第一个Spring程序-通过ClassPathXmlApplicationContext加载配置文件
*.hl_mark_KMSmartTagPinkImg{background-color:#ffaaff;}*.hl_mark_KMSmartTagBlueImg{background-color:# ...
- QSqlDatabase: QMYSQL driver not loaded
转载:KiteRunner24 在Qt 5.9中使用数据库连接时,弹出下面的错误: QSqlDatabase: QMYSQL driver not loaded QSqlDatabase: avail ...
- 学习笔记之Bitbucket
Bitbucket | The Git solution for professional teams https://bitbucket.org/ Git Tutorials and Trainin ...
- python selenium-4自动化测试模型
1.线性测试 特点:每一个脚本都是完整且独立的,可以单独执行. 缺点:用例的开发与维护成本很高 2.模块化驱动测试 特点:把重复的操作独立成公共模块,提高测试用例的可维护性 示例:将搜索封装到func ...
- 终端直接执行py文件,不需要python命令
然后给脚本文件运行权限,方法(1)chmod +x ./*.py方法(2)chmod 755 ./*.py (777也无所谓啦) 这个命令不去调整,会出现permission denied的错误终端直 ...
- 怎样使用 css 的@media print控制打印
怎样使用 css 的@media print控制打印? <HTML> <HEAD> <TITLE> New Document </TITLE> < ...
- tp5的RBAC插件及其使用很方便的管理用户登录及操作权限
tp5-rbac 本扩展包是tp5的rbac包,使用了部分tp5的特性实现了关系型数据库中特殊数据结构的处理. 安装方法 先安装composer如果不知道怎么安装使用composer请自行百度. 打开 ...
- direct path read/write (直接路径读/写)
转载:http://www.dbtan.com/2010/04/direct-path-readwrite.html direct path read/write (直接路径读/写): 直接路径读(d ...
- Hibernate 和 MyBatis 的对比
一.开发对比 开发速度 Hibernate 的真正掌握要比MyBatis来的难些.MyBatis框架较轻量级,相对简单很容易上手,但也相对简陋些.个人觉得要用好 MyBatis 还是要首先理解好 Hi ...