用keras实现lstm 利用Keras下的LSTM进行情感分析
1 I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more acceptable!:
1 Anyway, thats why I love ” Brokeback Mountain.
1 Brokeback mountain was beautiful…
0 da vinci code was a terrible movie.
0 Then again, the Da Vinci code is super shitty movie, and it made like 700 million.
0 The Da Vinci Code comes out tomorrow, which sucks.
其中的每个句子都有个标签 1 或 0, 用来代表积极或消极。
先把用到的包一次性全部导入
"language-python hljs">from keras.layers.core import Activation, Dense
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import nltk #用来分词
import collections #用来统计词频
import numpy as np
在开始前,先对所用数据做个初步探索。特别地,我们需要知道数据中有多少个不同的单词,每句话由多少个单词组成。
"language-pyhon hljs livecodeserver">maxlen = 0 #句子最大长度
word_freqs = collections.Counter() #词频
num_recs = 0 # 样本数
with open('./train.txt','r+') as f:
for line in f:
label, sentence = line.strip().split("\t")
words = nltk.word_tokenize(sentence.lower())
if len(words) > maxlen:
maxlen = len(words)
for word in words:
word_freqs[word] += 1
num_recs += 1
print('max_len ',maxlen)
print('nb_words ', len(word_freqs))
max_len 42
nb_words 2324
可见一共有 2324 个不同的单词,包括标点符号。每句话最多包含 42 个单词。
根据不同单词的个数 (nb_words),我们可以把词汇表的大小设为一个定值,并且对于不在词汇表里的单词,把它们用伪单词 UNK 代替。 根据句子的最大长度 (max_lens),我们可以统一句子的长度,把短句用 0 填充。
依前所述,我们把 VOCABULARY_SIZE 设为 2002。包含训练数据中按词频从大到小排序后的前 2000 个单词,外加一个伪单词 UNK 和填充单词 0。 最大句子长度 MAX_SENTENCE_LENGTH 设为40。
MAX_FEATURES = 2000
MAX_SENTENCE_LENGTH = 40
接下来建立两个 lookup tables,分别是 word2index 和 index2word,用于单词和数字转换。
"language-python hljs">vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}
下面就是根据 lookup table 把句子转换成数字序列了,并把长度统一到 MAX_SENTENCE_LENGTH, 不够的填 0 , 多出的截掉。
"language-python hljs">X = np.empty(num_recs,dtype=list)
y = np.zeros(num_recs)
i=0
with open('./train.txt','r+') as f:
for line in f:
label, sentence = line.strip().split("\t")
words = nltk.word_tokenize(sentence.lower())
seqs = []
for word in words:
if word in word2index:
seqs.append(word2index[word])
else:
seqs.append(word2index["UNK"])
X[i] = seqs
y[i] = int(label)
i += 1
X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)
最后是划分数据,80% 作为训练数据,20% 作为测试数据。
"language-python hljs">Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)
数据准备好后,就可以上模型了。这里损失函数用 binary_crossentropy, 优化方法用 adam。 至于 EMBEDDING_SIZE , HIDDEN_LAYER_SIZE , 以及训练时用到的BATCH_SIZE 和 NUM_EPOCHS 这些超参数,就凭经验多跑几次调优了。
EMBEDDING_SIZE = 128
HIDDEN_LAYER_SIZE = 64
model = Sequential()
model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH))
model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1))
model.add(Activation("sigmoid"))
pile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])
网络构建好后就是上数据训练了。用 10 个 epochs 和 batch_size 取 32 来训练这个网络。在每个 epoch, 我们用测试集当作验证集。
BATCH_SIZE = 32
NUM_EPOCHS = 10
model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest))
Train on 5668 samples, validate on 1418 samples
Epoch 1/10
5668/5668 [==============================] - 12s - loss: 0.2464 - acc: 0.8897 - val_loss: 0.0672 - val_acc: 0.9697
Epoch 2/10
5668/5668 [==============================] - 11s - loss: 0.0290 - acc: 0.9896 - val_loss: 0.0407 - val_acc: 0.9838
Epoch 3/10
5668/5668 [==============================] - 11s - loss: 0.0078 - acc: 0.9975 - val_loss: 0.0506 - val_acc: 0.9866
Epoch 4/10
5668/5668 [==============================] - 11s - loss: 0.0084 - acc: 0.9970 - val_loss: 0.0772 - val_acc: 0.9732
Epoch 5/10
5668/5668 [==============================] - 11s - loss: 0.0046 - acc: 0.9989 - val_loss: 0.0415 - val_acc: 0.9880
Epoch 6/10
5668/5668 [==============================] - 11s - loss: 0.0012 - acc: 0.9998 - val_loss: 0.0401 - val_acc: 0.9901
Epoch 7/10
5668/5668 [==============================] - 11s - loss: 0.0020 - acc: 0.9996 - val_loss: 0.0406 - val_acc: 0.9894
Epoch 8/10
5668/5668 [==============================] - 11s - loss: 7.7990e-04 - acc: 0.9998 - val_loss: 0.0444 - val_acc: 0.9887
Epoch 9/10
5668/5668 [==============================] - 11s - loss: 5.3168e-04 - acc: 0.9998 - val_loss: 0.0550 - val_acc: 0.9908
Epoch 10/10
5668/5668 [==============================] - 11s - loss: 7.8728e-04 - acc: 0.9996 - val_loss: 0.0523 - val_acc: 0.9901
可以看到,经过了 10 个epoch 后,在验证集上的正确率已经达到了 99%。
我们用已经训练好的 LSTM 去预测已经划分好的测试集的数据,查看其效果。选了 5 个句子的预测结果,并打印出了原句。
"language-python hljs">score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
print("\nTest score: %.3f, accuracy: %.3f" % (score, acc))
print('{} {} {}'.format('预测','真实','句子'))
for i in range(5):
idx = np.random.randint(len(Xtest))
xtest = Xtest[idx].reshape(1,40)
ylabel = ytest[idx]
ypred = model.predict(xtest)[0][0]
sent = " ".join([index2word[x] for x in xtest[0] if x != 0])
print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent))
Test score: 0.052, accuracy: 0.990
预测 真实 句子
0 0 oh , and brokeback mountain is a terrible movie …
1 1 the last stand and mission impossible 3 both were awesome movies .
1 1 i love harry potter .
1 1 mission impossible 2 rocks ! ! … .
1 1 harry potter is awesome i do n’t care if anyone says differently ! ..
可见在测试集上的正确率已达 99%.
我们可以自己输入一些话,让网络预测我们的情感态度。假如我们输入 I love reading. 和 You are so boring. 两句话,看看训练好的网络能否预测出正确的情感。
"language-python hljs">INPUT_SENTENCES = ['I love reading.','You are so boring.']
XX = np.empty(len(INPUT_SENTENCES),dtype=list)
i=0
for sentence in INPUT_SENTENCES:
words = nltk.word_tokenize(sentence.lower())
seq = []
for word in words:
if word in word2index:
seq.append(word2index[word])
else:
seq.append(word2index['UNK'])
XX[i] = seq
i+=1
XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH)
labels = [int(round(x[0])) for x in model.predict(XX) ]
label2word = {1:'积极', 0:'消极'}
for i in range(len(INPUT_SENTENCES)):
print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i]))
积极 I love reading.
消极 You are so boring.
Yes ,预测正确。
全部
# -*- coding: gbk -*-
from keras.layers.core import Activation, Dense
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import nltk
import numpy as np
## EDA
maxlen = 0
word_freqs = collections.Counter()
num_recs = 0
with open('./train.txt','r+') as f:
for line in f:
label, sentence = line.strip().split("\t")
words = nltk.word_tokenize(sentence.lower())
if len(words) > maxlen:
maxlen = len(words)
for word in words:
word_freqs[word] += 1
num_recs += 1
print('max_len ',maxlen)
print('nb_words ', len(word_freqs))
## 准备数据
MAX_FEATURES = 2000
MAX_SENTENCE_LENGTH = 40
vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}
X = np.empty(num_recs,dtype=list)
y = np.zeros(num_recs)
i=0
with open('./train.txt','r+') as f:
for line in f:
label, sentence = line.strip().split("\t")
words = nltk.word_tokenize(sentence.lower())
seqs = []
for word in words:
if word in word2index:
seqs.append(word2index[word])
else:
seqs.append(word2index["UNK"])
X[i] = seqs
y[i] = int(label)
i += 1
X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)
## 数据划分
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)
## 网络构建
EMBEDDING_SIZE = 128
HIDDEN_LAYER_SIZE = 64
BATCH_SIZE = 32
NUM_EPOCHS = 10
model = Sequential()
model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH))
model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1))
model.add(Activation("sigmoid"))
pile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])
## 网络训练
model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest))
## 预测
score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
print("\nTest score: %.3f, accuracy: %.3f" % (score, acc))
print('{} {} {}'.format('预测','真实','句子'))
for i in range(5):
idx = np.random.randint(len(Xtest))
xtest = Xtest[idx].reshape(1,40)
ylabel = ytest[idx]
ypred = model.predict(xtest)[0][0]
sent = " ".join([index2word[x] for x in xtest[0] if x != 0])
print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent))
##### 自己输入
INPUT_SENTENCES = ['I love reading.','You are so boring.']
XX = np.empty(len(INPUT_SENTENCES),dtype=list)
i=0
for sentence in INPUT_SENTENCES:
words = nltk.word_tokenize(sentence.lower())
seq = []
for word in words:
if word in word2index:
seq.append(word2index[word])
else:
seq.append(word2index['UNK'])
XX[i] = seq
i+=1
XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH)
labels = [int(round(x[0])) for x in model.predict(XX) ]
label2word = {1:'积极', 0:'消极'}
for i in range(len(INPUT_SENTENCES)):
print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i]))
用keras实现lstm 利用Keras下的LSTM进行情感分析的更多相关文章
- 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...
- NLP入门(十)使用LSTM进行文本情感分析
情感分析简介 文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...
- (转!)利用Keras实现图像分类与颜色分类
2018-07-19 全部谷歌渣翻加略微修改 大家将就的看哈 建议大佬们还是看看原文 点击收获原文 其中用到的示例文件 multi-output-classification 大家可以点击 下载 . ...
- TensorFlow 1.4利用Keras+Estimator API进行训练和预测
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中 ...
- Python机器学习笔记:利用Keras进行分类预测
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进 ...
- 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...
- CNN眼中的世界:利用Keras解释CNN的滤波器
转载自:https://keras-cn.readthedocs.io/en/latest/legacy/blog/cnn_see_world/ 文章信息 本文地址:http://blog.keras ...
- 【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...
- LSTM 文本情感分析/序列分类 Keras
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_e ...
随机推荐
- Codeforces Round #369 (Div. 2) A. Bus to Udayland 水题
A. Bus to Udayland 题目连接: http://www.codeforces.com/contest/711/problem/A Description ZS the Coder an ...
- Mac下配置Apache服务器
有的时候,我们需要在内网工作组中分享一些文件或是后台接口没有及时给出,你又想要模拟真实数据,直接在项目里创建plist也可以做到这种需求,但难免让工程变得冗余且看起来比较Low.这个时候就看出配置本地 ...
- HDU 4816 Bathysphere (2013长春现场赛D题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4816 2013长春区域赛的D题. 很简单的几何题,就是给了一条折线. 然后一个矩形窗去截取一部分,求最 ...
- C#Winform将WebBowser控件替换为Chrome内核
摘要 由于最近要做一个浏览器式的软件,其中有不少地方需要使用到jQuery和BootStrap,但是在C#中,默认的WebBrowser控件默认使用的是IE的core,而低版本的IE在JS加载上总是容 ...
- jeffy-vim-v3.2
jeffy-vim-v3.2 增加了vim-gutentags 插件,支持tags自动生成.
- WCF中修改接口或方法名称而不影响客户端程序
本篇接着"从Web Service和Remoting Service引出WCF服务"中有关WCF的部分. 运行宿主应用程序. 运行Web客户端中的网页. 输入内容,点击按钮,能获取 ...
- ASP.NET MVC异步验证是如何工作的03,jquery.validate.unobtrusive.js是如何工作的
在上一篇"ASP.NET MVC异步验证是如何工作的02,异步验证表单元素的创建"中了解了ASP.NET异步验证是如何创建表单元素的,本篇体验jquery.validate.uno ...
- 解决克隆 centos虚拟机后修改克隆后的机器的ip、mac、uuid失败的问题
解决办法: So here's how we fix it: Remove the kernel's networking interface rules file so that it ca ...
- Maven 构建
最近在工作中越来越经常的用到了Maven作为项目管理和Jar包管理和构建的工具,感觉Maven的确是很好用的.而且要将Maven的功能最大发挥出来,多模块是一个很好的集成例子. 一个Maven项目包括 ...
- JQuery的父、子、兄弟节点查找,节点的子节点循环
jQuery.parent(expr) //找父元素 jQuery.parents(expr) //找到所有祖先元素,不限于父元素 jQuery.children ...