题目链接: https://nanti.jisuanke.com/t/30994

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

给n个问题,然后每个问题 给出a,b,s 分别表示 第i个解决这个题,就给 (a*i+b) 的收益,s表示有 s个前置问题,必须回答出来 s个前置问题 才能解决这个问题

之前没有写过状压DP, 但是了解过旅行商问题,所以,感觉这个题目暴力莽,就能过了

dp[state] 中 state按照每个2进制位,如果为1,代表这个题被解决,所以,dp[state] 表示 相应位为1的题目都被解决的 最大收益(因为每个题解决的顺序不同,所以可能有不同的收益,但是我们 状态表示的是最大收益)

然后我们可以用 pre[i] 表示想要解决第 i 个问题,需要解决的问题的(二进制为1)集合

接着我们就可以DP了

用cnt[state] 表示 state这个状态之前已经解决多少个问题了

对于第 i 次

  对于 第 j 个问题

    对于 每个状态k

      如果状态k

        如果 已经解决 i-1个问题 && 状态 k 没解决第j个问题 && 状态k 已经解决了第j个问题的 前置问题

        分别对应  cnt[k] == i-1  &&  ((k>>j)&1)==0  && (k&pre[j]) ==pre[j]

        那么  state = k+(1<<j) ,这个状态 dp[state] 就可以更新成 第i次解决 j题的收益+dp[k]

但是 这里我们这里还是过不了问题 , 还要保证一个条件 即  k+(1<<j)  < (1<<n) 必须可以更新的状态 小于 (1<<n),超过的状态 无用,会得出错误的结果

#include<bits/stdc++.h>
using namespace std; const int N =<<;
typedef long long ll; int n,a[],b[],pre[];
ll dp[N],cnt[N]; void solve() {
dp[] = ;
ll res = ;
for(int i=; i<=n; i++) {
for(int j=; j<n; j++) {
for(int k=; k<(<<n); k++) {
if(cnt[k]!=i- || ((k>>j)&)== || (k&pre[j])!=pre[j])continue;
if(k+(<<j) >=(<<n)) continue;
if(dp[k]+1LL*a[j]*i+b[j] >= dp[k+(<<j)]) {
dp[k+(<<j)] = dp[k]+a[j]*i+b[j];
cnt[k+(<<j)] = cnt[k]+;
res = max(res, dp[k+(<<j)]);
}
}
}
}
cout << res <<endl;
} int main ()
{
//freopen("in.txt","r",stdin);
scanf("%d", &n);
for(int i=; i<n; i++)
{
int T;
scanf("%d %d %d",&a[i], &b[i], &T);
while (T--) {
int k; scanf("%d",&k);
pre[i] |= (<<(k-));
}
}
solve();
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)

    Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. 洛谷 P4697 Balloons [CEOI2011] 单调栈/dp (待补充qwq)

    正解:单调栈/dp 解题报告: 先放个传送门qwq 话说这题是放在了dp的题单里呢?但是听说好像用单调栈就可以做掉所以我就落实下单调栈的解法好了qwq (umm主要如果dp做好像是要斜率优化凸壳维护双 ...

  2. "portrait"(竖屏) "landscape"(横屏) css设置

    取决于浏览器或者设备的方向,HTML元素总是会有"portrait"(竖屏) "landscape"(横屏) class. 你可以在css中如下使用它们: .p ...

  3. PHPExcel使用-使用PHPExcel导入文件

    导入步骤: 1. 实例化excel读取对象 2. 加载excel文件 ----------------> ( 1>. 全部加载. 2>. 选择加载. ) 3. 读取excel文件 - ...

  4. c#图像灰度化、灰度反转、二值化

    图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*25 ...

  5. 测试常用的Oracle11G 命令行指令。

    测试常用的Oracle11G 命令行指令. ×××××××××××××××× 登录:

  6. mybitis学习笔记

    <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapperPUBLIC "-// ...

  7. 【安装vsftpd】安装vsftpd工具步骤

    1 安装vsftpd组件 [root@bogon ~]# yum -y install vsftpd 安装完后,有/etc/vsftpd/vsftpd.conf 文件,是vsftp的配置文件. 2 添 ...

  8. 排序的hashmap(guava)

    1.mvnrepository上搜索 guava.并引用其jar包 类似compile "com.google.guava:guava:18.0" 测试代码 Builder< ...

  9. Trove系列(三)—Trove的功能管理功能介绍

    Trove的功能管理功能Trove的功能管理功能包括给各种不同的版本的 datastore 安装不同的 功能. 本管理功能只适用于激活/去活全系统的功能.唯一例外的是数据存储功能列表功能,该功能对所有 ...

  10. 形象易懂讲解算法I——小波变换

    https://zhuanlan.zhihu.com/p/22450818?refer=dong5 最早发于回答:能不能通俗的讲解下傅立叶分析和小波分析之间的关系? - 咚懂咚懂咚的回答现收入专栏. ...