【自动化】基于Spark streaming的SQL服务实时自动化运维
设计背景
spark thriftserver目前线上有10个实例,以往通过监控端口存活的方式很不准确,当出故障时进程不退出情况很多,而手动去查看日志再重启处理服务这个过程很低效,故设计利用Spark streaming去实时获取spark thriftserver的log,通过log判断服务是否停止服务,从而进行对应的自动重启处理,该方案能达到秒级 7 * 24h不间断监控及维护服务。
设计架构
- 在需要检测的spark thriftserver服务节点上部署flume agent来监控日志流 (flume使用interceptor给日志加host信息)
- flume收集的日志流打入kafka
- spark streaming接收kafka的日志流,根据自定义关键词检测日志内容,如果命中关键字则认为服务不可用,把该日志对应的host信息打入mysql
- 写一个shell脚本从mysql读取host信息,执行重启服务操作
软件版本及配置
spark 2.0.1, kafka 0.10, flume 1.7
1)flume配置及命令:
修改flume-conf.properties
agent.sources = sparkTS070 agent.channels = c agent.sinks = kafkaSink # For each one of the sources, the type is defined agent.sources.sparkTS070.type = TAILDIR agent.sources.sparkTS070.interceptors = i1 agent.sources.sparkTS070.interceptors.i1.type = host agent.sources.sparkTS070.interceptors.i1.useIP = false agent.sources.sparkTS070.interceptors.i1.hostHeader = agentHost # The channel can be defined as follows. agent.sources.sparkTS070.channels = c agent.sources.sparkTS070.positionFile = /home/hadoop/xu.wenchun/apache-flume-1.7.0-bin/taildir_position.json agent.sources.sparkTS070.filegroups = f1 agent.sources.sparkTS070.filegroups.f1 = /data1/spark/logs/spark-hadoop-org.apache.spark.sql.hive.thriftserver.HiveThriftServer2-1-hadoop070.dx.com.out # Each sink's type must be defined agent.sinks.kafkaSink.type = org.apache.flume.sink.kafka.KafkaSink agent.sinks.kafkaSink.kafka.topic = mytest-topic1 agent.sinks.kafkaSink.kafka.bootstrap.servers = 10.87.202.51:9092 agent.sinks.kafkaSink.useFlumeEventFormat = true #Specify the channel the sink should use agent.sinks.kafkaSink.channel = c # Each channel's type is defined. agent.channels.c.type = memory
运行命令:
nohup bin/flume-ng agent -n agent -c conf -f conf/flume-conf.properties -Dflume.root.logger=INFO,LOGFILE &
2)kafka配置及执行命令:
修改config/server.properties
broker.id=1 listeners=PLAINTEXT://10.87.202.51:9092 log.dirs=/home/hadoop/xu.wenchun/kafka_2.11-0.10.0.1/kafka.log zookeeper.connect=10.87.202.44:2181,10.87.202.51:2181,10.87.202.52:2181 1 2 3 4
运行命令
nohup bin/kafka-server-start.sh config/server.properties &
spark streaming执行命令 :
/opt/spark-2.0.1-bin-2.6.0/bin/spark-submit --master yarn-cluster --num-executors 3 --class SparkTSLogMonito
3)shell脚本
写一个shell脚本从mysql读取host信息,执行重启服务操作
spark streaming监控job的核心代码
这类分享spark streaming代码,以下代码经过一些坑摸索出来验证可用。
stream.foreachRDD { rdd => rdd.foreachPartition { rddOfPartition => val conn = ConnectPool.getConnection println(" conn:" + conn) conn.setAutoCommit(false) //设为手动提交 val stmt = conn.createStatement() rddOfPartition.foreach { event => val body = event.value().get() val decoder = DecoderFactory.get().binaryDecoder(body, null) val result = new SpecificDatumReader[AvroFlumeEvent](classOf[AvroFlumeEvent]).read(null, decoder) val hostname = result.getHeaders.get(new Utf8("agentHost")) val text = new String(result.getBody.array()) if (text.contains("Broken pipe") || text.contains("No active SparkContext")) { val dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyyMMddhhmmssSSS") val id = dateFormat.format(new Date()) + "_" + (new util.Random).nextInt(999) stmt.addBatch("insert into monitor(id,hostname) values ('" + id + "','" + hostname + "')") println("insert into monitor(id,hostname) values ('" + id + "','" + hostname + "')") } } stmt.executeBatch() conn.commit() conn.close() } }
以上是一个实时处理的典型入门应用,刚好遇到这类监控运维问题,于是采用该方案进行处理,效果不错。
【自动化】基于Spark streaming的SQL服务实时自动化运维的更多相关文章
- 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...
- .Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...
- StreamDM:基于Spark Streaming、支持在线学习的流式分析算法引擎
StreamDM:基于Spark Streaming.支持在线学习的流式分析算法引擎 streamDM:Data Mining for Spark Streaming,华为诺亚方舟实验室开源了业界第一 ...
- 基于Spark Streaming + Canal + Kafka对Mysql增量数据实时进行监测分析
Spark Streaming可以用于实时流项目的开发,实时流项目的数据源除了可以来源于日志.文件.网络端口等,常常也有这种需求,那就是实时分析处理MySQL中的增量数据.面对这种需求当然我们可以通过 ...
- Spark 实践——基于 Spark Streaming 的实时日志分析系统
本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计, ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源 ...
- 基于Spark Streaming预测股票走势的例子(一)
最近学习Spark Streaming,不知道是不是我搜索的姿势不对,总找不到具体的.完整的例子,一怒之下就决定自己写一个出来.下面以预测股票走势为例,总结了用Spark Streaming开发的具体 ...
- 从一个简单的约束看规范性的SQL脚本对数据库运维的影响
之前提到了约束的一些特点,看起来也没什么大不了的问题,http://www.cnblogs.com/wy123/p/7350265.html以下以实际生产运维中遇到的一个问题来说明规范的重要性. 如下 ...
随机推荐
- IIS7启用gzip
压缩什么 服务器基于文件类型选择压缩什么,但这通常受限于对其进行的配置.很多网站就会压缩其HTML文档.压缩脚本和样式表也是非常值得的,压缩的内容包括XML和JSON在内的任何文本响应,但这里只关注脚 ...
- mysql 内置功能 触发器介绍
使用触发器可以在用户对表进行[增.删.改]操作时前后定义一些操作,注意:没有查询 创建触发器 create trigger 触发器的名字 之前(before)或者之后(after) 行为(inser ...
- Attempt to invoke interface method 'boolean java.util.List.add(java.lang.Object)' on a null
1.Android Studio报错 Attempt to invoke interface method 'boolean java.util.List.add(java.lang.Object)' ...
- MySQL DBA 管理常用命令
一:在Linux下管理MySQL数据库的时候总有一些很紧急的情况,发现数据库突然变得压力很大了,那么作为一个DBA,也许需要一些常用的手段或者说命令去分析问题出现在哪里,然后解决: 数据库突然产生压力 ...
- Python3学习之路~2.6 集合操作
集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 关系测试,测试两组数据之前的交集.差集.并集等关系 常用操作 >>> list1 = ...
- visual studio code 编辑器的配置及快捷键等, vscode, csc
visual studio code (vsc) 对开发node.js,javascript,python,html,golang等比较友好,同时支持git浏览及分屏对比,运行速度快,所以是值得一用的 ...
- Centos上把新安装的程序添加到系统环境变量的两种方法
1.软链接 通过命令查看当前系统的环境变量信息,然后软连接形式把程序的地址连接到已经在环境变量中的目录中 echo "$PATH" > /root/tmp 结果如下: /us ...
- [LeetCode] 458. Poor Pigs_Easy tag: Math
There are 1000 buckets, one and only one of them contains poison, the rest are filled with water. Th ...
- 4.keras实现-->生成式深度学习之用变分自编码器VAE生成图像(mnist数据集和名人头像数据集)
变分自编码器(VAE,variatinal autoencoder) VS 生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以 ...
- 手把手教你,C#.Net如何用Log4net把错误日志写入到SQLite数据库中
在项目中,我们往往会有把错误日志记录下来的习惯,这样有利于当网站发布后,能第一时间找到错误的所在地,以及错误的原因,以便于我们第一时间纠错.往往我们会把错误日志直接写到txt文本中,虽然操作简单,但是 ...