Profile API

都说要致富先修路,要调优当然需要先监控啦,elasticsearch在很多层面都提供了stats方便你来监控调优,但是还不够,其实很多情况下查询速度慢很大一部分原因是糟糕的查询引起的,玩过SQL的人都知道,数据库服务的执行计划(execution plan)非常有用,可以看到那些查询走没走索引和执行时间,用来调优,elasticsearch现在提供了Profile API来进行查询的优化,只需要在查询的时候开启profile:true就可以了,一个查询执行过程中的每个组件的性能消耗都能收集到。 

那个子查询耗时多少,占比多少,一目了然,同时支持search和aggregation的profile!

Usage

Any _search request can be profiled by adding a top-level profile parameter:

GET /twitter/_search
{
"profile": true,

  "query" : {
"match" : { "message" : "some number" }
}
}

Setting the top-level profile parameter to true will enable profiling for the search

This will yield the following result:

{
"took": 25,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped" : 0,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0.5093388,
"hits": [...]

   },
"profile": {
"shards": [
{
"id": "[2aE02wS1R8q_QFnYu6vDVQ][twitter][0]",
"searches": [
{
"query": [
{
"type": "BooleanQuery",
"description": "message:some message:number",
"time_in_nanos": "1873811",
"breakdown": {
"score": 51306,
"score_count": 4,
"build_scorer": 2935582,
"build_scorer_count": 1,
"match": 0,
"match_count": 0,
"create_weight": 919297,
"create_weight_count": 1,
"next_doc": 53876,
"next_doc_count": 5,
"advance": 0,
"advance_count": 0
},
"children": [
{
"type": "TermQuery",
"description": "message:some",
"time_in_nanos": "391943",
"breakdown": {
"score": 28776,
"score_count": 4,
"build_scorer": 784451,
"build_scorer_count": 1,
"match": 0,
"match_count": 0,
"create_weight": 1669564,
"create_weight_count": 1,
"next_doc": 10111,
"next_doc_count": 5,
"advance": 0,
"advance_count": 0
}
},
{
"type": "TermQuery",
"description": "message:number",
"time_in_nanos": "210682",
"breakdown": {
"score": 4552,
"score_count": 4,
"build_scorer": 42602,
"build_scorer_count": 1,
"match": 0,
"match_count": 0,
"create_weight": 89323,
"create_weight_count": 1,
"next_doc": 2852,
"next_doc_count": 5,
"advance": 0,
"advance_count": 0
}
}
]
}
],
"rewrite_time": 51443,
"collector": [
{
"name": "CancellableCollector",
"reason": "search_cancelled",
"time_in_nanos": "304311",
"children": [
{
"name": "SimpleTopScoreDocCollector",
"reason": "search_top_hits",
"time_in_nanos": "32273"
}
]
}
]
}
],
"aggregations": []
}
]
}
}

Search results are returned, but were omitted here for brevity

Even for a simple query, the response is relatively complicated. Let’s break it down piece-by-piece before moving to more complex examples.

First, the overall structure of the profile response is as follows:

{
"profile": {
"shards": [
{
"id": "[2aE02wS1R8q_QFnYu6vDVQ][twitter][0]",

              "searches": [
{
"query": [...],

                    "rewrite_time": 51443,      

                    "collector": [...]          

                 }
],
"aggregations": [...]

           }
]
}
}

A profile is returned for each shard that participated in the response, and is identified by a unique ID

Each profile contains a section which holds details about the query execution

Each profile has a single time representing the cumulative rewrite time

Each profile also contains a section about the Lucene Collectors which run the search

Each profile contains a section which holds the details about the aggregation execution

ES profile 性能优化用——返回各个shard的耗时的更多相关文章

  1. ES的性能优化

    ES的性能优化 es在数据量很大的情况下(数十亿级别)如何提高查询效率? 在es里,不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景.也许有的场景是你换个参数,或者调整一下语法,就可以搞定 ...

  2. Mali GPU OpenGL ES 应用性能优化--基本方法

    1. 经常使用优化工具 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvTXlBcnJvdw==/font/5a6L5L2T/fontsize/400/fil ...

  3. Mali GPU OpenGL ES 应用性能优化--測试+定位+优化流程

    1. 使用DS-5 Streamline定位瓶颈 DS-5 Streamline要求GPU驱动启用性能測试,在Mali GPU驱动中激活性能測试对性能影响微不足道. 1.1 DS-5 Streamli ...

  4. Elasticsearch 通关教程(七): Elasticsearch 的性能优化

    硬件选择 Elasticsearch(后文简称 ES)的基础是 Lucene,所有的索引和文档数据是存储在本地的磁盘中,具体的路径可在 ES 的配置文件../config/elasticsearch. ...

  5. 腾讯云Elasticsearch集群规划及性能优化实践

    ​一.引言 随着腾讯云 Elasticsearch 云产品功能越来越丰富,ES 用户越来越多,云上的集群规模也越来越大.我们在日常运维工作中也经常会遇到一些由于前期集群规划不到位,导致后期业务增长集群 ...

  6. MongoDB学习笔记(四)--索引 && 性能优化

    索引                                                                                             基础索引 ...

  7. DB-MySQL:MySQL 语句性能优化

    ylbtech-DB-MySQL:MySQL 语句性能优化 1.返回顶部 1. MySQL概述1.数据库设计 3范式2.数据库分表分库---会员系统() 水平分割(分页如何查询)MyChar .垂直3 ...

  8. [python]用profile协助程序性能优化

    转自:http://blog.csdn.net/gzlaiyonghao/article/details/1483728 本文最初发表于恋花蝶的博客http://blog.csdn.net/lanph ...

  9. mysql性能优化-慢查询分析、优化索引和配置 (慢查询日志,explain,profile)

    mysql性能优化-慢查询分析.优化索引和配置 (慢查询日志,explain,profile) 一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 ...

随机推荐

  1. windows tomcat web应用以及eclipse console乱码解决方法

    在windows下,如果vm文件名为UTF-8格式,则显示乱码(velocity写出的不乱码): 改回GBK,则不再乱码.

  2. velocity #parse抽象重用部分组件

    在某些时候,处于重用的目的,我们会选择将可以重用的部分内容剥离在单独的模板文件中,比如对于查询页面的表格部分,因为现在很多的条件可能是通过弹出查询框的方式来实现,而作为普通页面的时候,他们会有更多的功 ...

  3. 20145322 《网络对抗》 MSF基础应用1

    20145322何志威 Exp5 MS08_067漏洞测试 实验问答 什么是exploit.payload.encode exploit:通过一个漏洞对程序进行攻击的过程 payload:有具体功能作 ...

  4. ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

    数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a% ...

  5. CRT中的时间(time_t和tm)(转载)

    转载:http://blog.csdn.net/bokee/article/details/5330682 首先介绍基本的时间概念. 时间一般分为两种,一种是本地时间(Local Time),一种是协 ...

  6. git分支 远程协作

    创建文件mkdir ### cd ### git init 初始化 git config global user.name “username” git config global user.emia ...

  7. C# 查出数据表DataTable 清除一列中的重复项保留其他项

    http://bbs.csdn.net/topics/391085792     DataTable 老表= 新表.AsEnumerable().GroupBy(p => p["姓名& ...

  8. MVC ---- IEnumerable<T>、List<T> 前台遍历展示

    突然做前台数据展示,发现IEnumerable 对一个列表的展示还是可以,但要是多个类型放在一个表中如何处理呢,如下: 一个类IEnumerable遍历 后台 public IEnumerable&l ...

  9. diff详解,读懂diff结果-转载

    阅读目录 1.概述 2.diff如何工作,如何理解diff的执行结果 3.Normal模式 4.Context模式 5.Unified模式 6.比较目录 7.一些有用的参数 回到顶部 1.概述 本文将 ...

  10. pyqt 渲染html

    from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtWebE ...