基于贪心算法求解TSP问题(JAVA)
概述
详细
前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化!
一、TPS问题
TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:
V={c1, c2, …, ci, …, cn},i = 1,2, …, n,是所有城市的集合.ci表示第i个城市,n为城市的数目;
E={(r, s): r,s∈ V}是所有城市之间连接的集合;
C = {crs: r,s∈ V}是所有城市之间连接的成本度量(一般为城市之间的距离);
如果crs = csr, 那么该TSP问题为对称的,否则为非对称的。
一个TSP问题可以表达为:
求解遍历图G = (V, E, C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。
二、贪心算法
贪心算法,又名贪婪算法(学校里老教授都喜欢叫贪婪算法),是一种常用的求解最优化问题的简单、迅速的算法。贪心算法总是做出在当前看来最好的选择,它所做的每一个在当前状态下某种意义上是最好的选择即贪心选择,并希望通过每次所作的贪心选择导致最终得到问题最优解。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
1、贪心算法的基本思路
从问题的某一个初始解触发逐步逼近给定的目标,以尽可能快地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。大致步骤如下:
1)建立数学模型来描述问题;
2)把求解的问题分成若干个子问题
3)对每一个子问题求解,得到子问题的局部最优解
4)把子问题的局部最优解合成原问题的一个解
2、贪心算法的实现框架
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择,而贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
从问题的某一初始解出发;
while (能朝给定总目标前进一步)
{
利用可行的决策,求出可行解的一个解元素;
}
由所有解元素组合成问题的一个可行解;
3、贪心算法存在的问题
1)不能保证求得的最后解是最佳的;
2)不能用来求最大最小解问题;
3)只能在某些特定条件约束的情况下使用,例如贪心策略必须具备无后效性等。
4、典型的贪心算法使用领域
马踏棋盘、背包、装箱等
三、贪心算法求解TSP问题
贪心策略:在当前节点下遍历所有能到达的下一节点,选择距离最近的节点作为下一节点。基本思路是,从一节点出发遍历所有能到达的下一节点,选择距离最近的节点作为下一节点,然后把当前节点标记已走过,下一节点作为当前节点,重复贪心策略,以此类推直至所有节点都标记为已走节点结束。
我们使用TSP问题依然来自于tsplib上的att48,这是一个对称TSP问题,城市规模为48,其最优值为10628.其距离计算方法下图所示:
好,下面是具体代码:
package noah; import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader; public class TxTsp { private int cityNum; // 城市数量
private int[][] distance; // 距离矩阵 private int[] colable;//代表列,也表示是否走过,走过置0
private int[] row;//代表行,选过置0 public TxTsp(int n) {
cityNum = n;
} private void init(String filename) throws IOException {
// 读取数据
int[] x;
int[] y;
String strbuff;
BufferedReader data = new BufferedReader(new InputStreamReader(
new FileInputStream(filename)));
distance = new int[cityNum][cityNum];
x = new int[cityNum];
y = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
// 读取一行数据,数据格式1 6734 1453
strbuff = data.readLine();
// 字符分割
String[] strcol = strbuff.split(" ");
x[i] = Integer.valueOf(strcol[1]);// x坐标
y[i] = Integer.valueOf(strcol[2]);// y坐标
}
data.close(); // 计算距离矩阵
// ,针对具体问题,距离计算方法也不一样,此处用的是att48作为案例,它有48个城市,距离计算方法为伪欧氏距离,最优值为10628
for (int i = 0; i < cityNum - 1; i++) {
distance[i][i] = 0; // 对角线为0
for (int j = i + 1; j < cityNum; j++) {
double rij = Math
.sqrt(((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j])
* (y[i] - y[j])) / 10.0);
// 四舍五入,取整
int tij = (int) Math.round(rij);
if (tij < rij) {
distance[i][j] = tij + 1;
distance[j][i] = distance[i][j];
} else {
distance[i][j] = tij;
distance[j][i] = distance[i][j];
}
}
} distance[cityNum - 1][cityNum - 1] = 0; colable = new int[cityNum];
colable[0] = 0;
for (int i = 1; i < cityNum; i++) {
colable[i] = 1;
} row = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
row[i] = 1;
} } public void solve(){ int[] temp = new int[cityNum];
String path="0"; int s=0;//计算距离
int i=0;//当前节点
int j=0;//下一个节点
//默认从0开始
while(row[i]==1){
//复制一行
for (int k = 0; k < cityNum; k++) {
temp[k] = distance[i][k];
//System.out.print(temp[k]+" ");
}
//System.out.println();
//选择下一个节点,要求不是已经走过,并且与i不同
j = selectmin(temp);
//找出下一节点
row[i] = 0;//行置0,表示已经选过
colable[j] = 0;//列0,表示已经走过 path+="-->" + j;
//System.out.println(i + "-->" + j);
//System.out.println(distance[i][j]);
s = s + distance[i][j];
i = j;//当前节点指向下一节点
}
System.out.println("路径:" + path);
System.out.println("总距离为:" + s); } public int selectmin(int[] p){
int j = 0, m = p[0], k = 0;
//寻找第一个可用节点,注意最后一次寻找,没有可用节点
while (colable[j] == 0) {
j++;
//System.out.print(j+" ");
if(j>=cityNum){
//没有可用节点,说明已结束,最后一次为 *-->0
m = p[0];
break;
//或者直接return 0;
}
else{
m = p[j];
}
}
//从可用节点J开始往后扫描,找出距离最小节点
for (; j < cityNum; j++) {
if (colable[j] == 1) {
if (m >= p[j]) {
m = p[j];
k = j;
}
}
}
return k;
} public void printinit() {
System.out.println("print begin....");
for (int i = 0; i < cityNum; i++) {
for (int j = 0; j < cityNum; j++) {
System.out.print(distance[i][j] + " ");
}
System.out.println();
}
System.out.println("print end....");
} public static void main(String[] args) throws IOException {
System.out.println("Start....");
TxTsp ts = new TxTsp(48);
ts.init("c://data.txt");
//ts.printinit();
ts.solve();
}
}
四、项目运行介绍
下载项目后,导入eclipse,项目截图如下:
求解结果截图:
五、总结
单从求解结果来看,我个人其实还是能接受这个解,但仔细想想,实际上这个求解结果有太多运气成分在里面,贪心算法毕竟是贪心算法,只能缓一时,而不是长久之计,问题的模型、参数对贪心算法求解结果具有决定性作用,这在某种程度上是不能接受的,于是聪明的人类就发明了各种智能算法(也叫启发式算法),但在我看来所谓的智能算法本质上就是贪心算法和随机化算法结合,例如传统遗传算法用的选择策略就是典型的贪心选择,正是这些贪心算法和随机算法的结合,我们才看到今天各种各样的智能算法。
注:本文著作权归作者,由demo大师发表,拒绝转载,转载需要作者授权
基于贪心算法求解TSP问题(JAVA)的更多相关文章
- 基于爬山算法求解TSP问题(JAVA)
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...
- 利用HTML5 Canvas和Javascript实现的蚁群算法求解TSP问题演示
HTML5提供了Canvas对象,为画图应用提供了便利. Javascript可执行于浏览器中, 而不须要安装特定的编译器: 基于HTML5和Javascript语言, 可随时编写应用, 为算法測试带 ...
- 贪心算法求解活动安排<算法分析>
一.实验内容及要求 1.要求按贪心算法原理求解问题: 2.要求手工输入s[10]及f[10],其中注意自己判断s[i]<f[i]: 3.要求显示所有活动及最优活动安排的i事件列表.二.实验步骤 ...
- C/C++贪心算法解决TSP问题
贪心算法解决旅行商问题 TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干 ...
- 基于贪心算法的几类区间覆盖问题 nyoj 12喷水装置(二) nyoj 14会场安排问题
1)区间完全覆盖问题 问题描述:给定一个长度为m的区间,再给出n条线段的起点和终点(注意这里是闭区间),求最少使用多少条线段可以将整个区间完全覆盖 样例: 区间长度8,可选的覆盖线段[2,6],[1, ...
- 多线程动态规划算法求解TSP(Traveling Salesman Problem) 并附C语言实现例程
TSP问题描述: 旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须 ...
- 基于雪花算法生成分布式ID(Java版)
SnowFlake算法原理介绍 在分布式系统中会将一个业务的系统部署到多台服务器上,用户随机访问其中一台,而之所以引入分布式系统就是为了让整个系统能够承载更大的访问量.诸如订单号这些我们需要它是全局唯 ...
- 蚁群算法求解TSP问题
一.蚁群算法简介 蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法:蚂蚁在运动过程中,能够在它所经过的路径上留下信息素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知 ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
随机推荐
- Java常见异常(Runtime Exception )小结(转)
原文链接:Java常见异常(Runtime Exception )小结 Java异常体系结构呈树状,其层次结构图如图 1所示: 本文重在Java中异常机制的一些概念.写本文的目的在 ...
- Java NIO: Non-blocking Server
Even if you understand how the Java NIO non-blocking features work (Selector, Channel, Buffer etc.), ...
- OA系统权限管理设计方案【转】
l 不同职责的人员,对于系统操作的权限应该是不同的.优秀的业务系统,这是最基本的功能. l 可以对“组”进行权限分配.对于一个大企业的业务系统来说,如果要求管理员为其下员工逐一分配系统操作权限的话,是 ...
- poj 4468Spy(kmp算法)
Spy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- centos6.8 mysql5.6.34 root密码重置
1.关闭正在运行的MySQL service mysql stop 2.启动MySQL的安全模式 mysqld_safe --skip-grant-tables 等1分钟如果还没返回的话,新开shel ...
- SQL 2008 R2 收缩日志,不用修改简单模式
BACKUP LOG jmd8 TO DISK = N'C:\jmd8_20140429014500.trn' WITH NOREWIND, NOUNLOAD USE [JMD8]GODBCC SHR ...
- 泊松分布E(X^2)
由于求期望实际就是求平均值,所以E(X^2)=E[X*X]=E[X*X]+E(X)-E(X)=E[X*X+X-X]=E[X(X-1)+X]E[X(X-1)+X]=E[X(X-1)]+E(X)即:和的平 ...
- LigerUI之Grid使用详解(一)——显示数据
目录: 一.概述 二.Grid使用步骤 三.使用Grid展示数据 四.源码下载 一.概述 在开发web信息管理系统时,使用Web前端框架可以帮助我们快速搭建一组风格统一的界面效果,而且能够解决大多数浏 ...
- Deep Learning 教程(斯坦福深度学习研究团队)
http://www.zhizihua.com/blog/post/602.html 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为 ...
- (转)Esfog_UnityShader教程_UnityShader语法实例浅析
距离上次首篇前言已经有一段时间了,一直比较忙,今天是周末不可以再拖了,经过我一段时间的考虑,我决定这一系列的教程会避免过于深入细节,一来可以避免一些同学被误导,二来会避免文章过于冗长难读, 三来可以让 ...