Java实现的简单神经网络(基于Sigmoid激活函数)
主体代码
NeuronNetwork.java
- package com.rockbb.math.nnetwork;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- public class NeutonNetwork {
- private List<NeuronLayer> layers;
- public NeuronNetwork(int[] sizes, double bpFactor, Activator activator) {
- layers = new ArrayList<>(sizes.length - 1);
- int inputSize = sizes[0];
- for (int i = 1; i < sizes.length; i++) {
- NeuronLayer layer = new NeuronLayer(inputSize, sizes[i], activator, bpFactor);
- layers.add(layer);
- inputSize = sizes[i];
- }
- for (int i = 0; i < layers.size() - 1; i++) {
- layers.get(i).setNext(layers.get(i + 1));
- }
- }
- public List<NeuronLayer> getLayers() {return layers;}
- public void setLayers(List<NeuronLayer> layers) {this.layers = layers;}
- public double getError() {
- return layers.get(layers.size() - 1).getError();
- }
- public List<Double> predict(List<Double> inputs) {
- List<Double> middle = inputs;
- for (int i = 0; i < layers.size(); i++) {
- middle = layers.get(i).forward(middle);
- }
- return middle;
- }
- public void backward() {
- for (int j= layers.size() - 1; j >=0; j--) {
- layers.get(j).backward();
- }
- }
- public void fillTargets(List<Double> targets) {
- layers.get(layers.size() - 1).fillTargets(targets);
- }
- @Override
- public String toString() {
- StringBuilder sb = new StringBuilder();
- for (int j = 0; j < layers.size(); j++) {
- sb.append(layers.get(j).toString());
- }
- return sb.toString();
- }
- public static String listToString(List<Double> list) {
- StringBuilder sb = new StringBuilder();
- for (Double t : list) {
- sb.append(String.format("% 10.8f ", t));
- }
- return sb.toString();
- }
- public static void main(String[] args) {
- int[] sz = new int[]{2, 4, 1};
- double[][] trainData = {{0d, 0d},{0d, 1d},{1d, 0d},{1d, 1d}};
- double[][] targetDate = {{0d},{1d},{1d},{0d}};
- NeuronNetwork nn = new NeuronNetwork(sz, 0.5d, new SigmoidActivator());
- for (int kk = 0; kk < 20000; kk++) {
- double totalError = 0d;
- for (int i = 0; i < trainData.length; i++) {
- List<Double> inputs = Arrays.asList(trainData[i][0], trainData[i][1]);
- List<Double> targets = Arrays.asList(targetDate[i][0]);
- nn.fillTargets(targets);
- nn.predict(inputs);
- //System.out.print(nn);
- System.out.println(String.format("kk:%5d, i:%d, error: %.8f\n", kk, i, nn.getError()));
- totalError += nn.getError();
- nn.backward();
- }
- System.out.println(String.format("kk:%5d, Total Error: %.8f\n\n", kk, totalError));
- if (totalError < 0.0001) {
- System.out.println(nn);
- break;
- }
- }
- System.out.println(nn);
- }
- }
NeuronLayer.java
- package com.rockbb.math.nnetwork;
- import java.util.ArrayList;
- import java.util.List;
- public class NeuronLayer {
- private int inputSize;
- private List<Neuron> neurons;
- private double bias;
- private Activator activator;
- private NeuronLayer next;
- private double bpFactor;
- private List<Double> inputs;
- public NeuronLayer(int inputSize, int size, Activator activator, double bpFactor) {
- this.inputSize = inputSize;
- this.activator = activator;
- this.bpFactor = bpFactor;
- this.bias = Math.random() - 0.5;
- this.neutrons = new ArrayList<>(size);
- for (int i = 0; i < size; i++) {
- Neuron neuron = new Neuron(this, inputSize);
- neurons.add(neuron);
- }
- }
- public int getInputSize() {return inputSize;}
- public void setInputSize(int inputSize) {this.inputSize = inputSize;}
- public List<Neuron> getNeurons() {return neurons;}
- public void setNeurons(List<Neuron> neurons) {this.neurons = neurons;}
- public double getBias() {return bias;}
- public void setBias(double bias) {this.bias = bias;}
- public Activator getActivator() {return activator;}
- public void setActivator(Activator activator) {this.activator = activator;}
- public NeutronLayer getNext() {return next;}
- public void setNext(NeutronLayer next) {this.next = next;}
- public List<Double> forward(List<Double> inputs) {
- this.inputs = inputs;
- List<Double> outputs = new ArrayList<Double>(neurons.size());
- for (int i = 0; i < neurons.size(); i++) {
- outputs.add(0d);
- }
- for (int i = 0; i < neurons.size(); i++) {
- double output = neurons.get(i).forward(inputs);
- outputs.set(i, output);
- }
- return outputs;
- }
- public void backward() {
- if (this.next == null) {
- // If this is the output layer, calculate delta for each neutron
- double totalDelta = 0d;
- for (int i = 0; i < neurons.size(); i++) {
- Neutron n = neurons.get(i);
- double delta = -(n.getTarget() - n.getOutput()) * activator.backwardDelta(n.getOutput());
- n.setBpDelta(delta);
- totalDelta += delta;
- // Reflect to each weight under this neuron
- for (int j = 0; j < n.getWeights().size(); j++) {
- n.getWeights().set(j, n.getWeights().get(j) - bpFactor * delta * inputs.get(j));
- }
- }
- // Relfect to bias
- this.bias = this.bias - bpFactor * totalDelta / neutrons.size();
- } else {
- // if this is the hidden layer
- double totalDelta = 0d;
- for (int i = 0; i < neurons.size(); i++) {
- Neuron n = neurons.get(i);
- List<Neuron> downNeurons = next.getNeurons();
- double delta = 0;
- for (int j = 0; j < downNeurons.size(); j++) {
- delta += downNeurons.get(j).getBpDelta() * downNeurons.get(j).getWeights().get(i);
- }
- delta = delta * activator.backwardDelta(n.getOutput());
- n.setBpDelta(delta);
- totalDelta += delta;
- // Reflect to each weight under this neuron
- for (int j = 0; j < n.getWeights().size(); j++) {
- n.getWeights().set(j, n.getWeights().get(j) - bpFactor * delta * inputs.get(j));
- }
- }
- // Relfect to bias
- this.bias = this.bias - bpFactor * totalDelta / neutrons.size();
- }
- }
- public double getError() {
- double totalError = 0d;
- for (int i = 0; i < neurons.size(); i++) {
- totalError += Math.pow(neurons.get(i).getError(), 2);
- }
- return totalError / (2 * neurons.size());
- }
- public void fillTargets(List<Double> targets) {
- for (int i = 0; i < neurons.size(); i++) {
- neurons.get(i).setTarget(targets.get(i));
- }
- }
- public double filter(double netInput) {
- return activator.forward(netInput + bias);
- }
- @Override
- public String toString() {
- StringBuilder sb = new StringBuilder();
- sb.append(String.format("Input size: %d, bias: %.8f\n", inputSize, bias));
- for (int i = 0; i < neurons.size(); i++) {
- sb.append(String.format("%3d: %s\n", i, neurons.get(i).toString()));
- }
- return sb.toString();
- }
- }
Neuron.java
- package com.rockbb.math.nnetwork;
- import java.util.ArrayList;
- import java.util.List;
- public class Neuron {
- private NeuronLayer layer;
- private List<Double> weights;
- private double output;
- private double target;
- private double bpDelta;
- public Neuron(NeuronLayer layer, int inputSize) {
- this.layer = layer;
- this.weights = new ArrayList<>(inputSize);
- for (int i = 0; i < inputSize; i++) {
- // Initialize each weight with value [0.1, 1)
- weights.add(Math.random() * 0.9 + 0.1);
- }
- this.bpDelta = 0d;
- }
- public NeuronLayer getLayer() {return layer;}
- public void setLayer(NeuronLayer layer) {this.layer = layer;}
- public List<Double> getWeights() {return weights;}
- public void setWeights(List<Double> weights) {this.weights = weights;}
- public double getOutput() {return output;}
- public void setOutput(double output) {this.output = output;}
- public double getTarget() {return target;}
- public void setTarget(double target) {this.target = target;}
- public double getBpDelta() {return bpDelta;}
- public void setBpDelta(double bpDelta) {this.bpDelta = bpDelta;}
- public double calcNetInput(List<Double> inputs) {
- double netOutput = 0f;
- for (int i = 0; i < weights.size(); i++) {
- netOutput += inputs.get(i) * weights.get(i);
- }
- return netOutput;
- }
- public double forward(List<Double> inputs) {
- double netInput = calcNetInput(inputs);
- this.output = layer.filter(netInput);
- return this.output;
- }
- public double getError() {
- return target - output;
- }
- @Override
- public String toString() {
- StringBuilder sb = new StringBuilder();
- sb.append(String.format("O:% 10.8f T:% 10.8f D:% 10.8f w:{", output, target, bpDelta));
- for (int i = 0; i < weights.size(); i++) {
- sb.append(String.format("% 10.8f ", weights.get(i)));
- }
- sb.append('}');
- return sb.toString();
- }
- }
激活函数
Activator.java
- package com.rockbb.math.nnetwork;
- public interface Activator {
- double forward(double input);
- double backwardDelta(double output);
- }
SigmoidActivator.java
- package com.rockbb.math.nnetwork;
- public class SigmoidActivator implements Activator {
- public double forward(double input) {
- return 1 / (1 + Math.exp(-input));
- }
- public double backwardDelta(double output) {
- return output * (1 - output);
- }
- }
在同样的训练数据和误差目标下, 比 http://www.emergentmind.com/neural-network 使用更少的训练次数.
使用Sigmoid激活函数工作正常.
使用ReLu激活函数时总会使某个Neuron冻结, 不能收敛, 待检查
Java实现的简单神经网络(基于Sigmoid激活函数)的更多相关文章
- JAX-WS 学习一:基于java的最简单的WebService服务
JAVA 1.6 之后,自带的JAX-WS API,这使得我们可以很方便的开发一个基于Java的WebService服务. 基于JAVA的WebService 服务 1.创建服务端WebService ...
- 深度学习原理与框架-神经网络架构 1.神经网络构架 2.激活函数(sigmoid和relu) 3.图片预处理(减去均值和除标准差) 4.dropout(防止过拟合操作)
神经网络构架:主要时表示神经网络的组成,即中间隐藏层的结构 对图片进行说明:我们可以看出图中的层数分布: input layer表示输入层,维度(N_num, input_dim) N_num表示输 ...
- day-11 python自带库实现2层简单神经网络算法
深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...
- struts1:(Struts重构)构建一个简单的基于MVC模式的JavaWeb
在构建一个简单的基于MVC模式的JavaWeb 中,我们使用了JSP+Servlet+JavaBean构建了一个基于MVC模式的简单登录系统,但在其小结中已经指出,这种模式下的Controller 和 ...
- 一个简单的基于HTTP协议的屏幕共享应用
HTTP协议可以能是应用层协议里使用最广泛并且用途最多样的一个了.我们一般使用HTTP协议来浏览网页,但是HTTP协议还用来做很多其它用途.对开发人员来讲很常见的一种就是用HTTP协议作为各种版本控制 ...
- 如何用70行Java代码实现深度神经网络算法
http://www.tuicool.com/articles/MfYjQfV 如何用70行Java代码实现深度神经网络算法 时间 2016-02-18 10:46:17 ITeye 原文 htt ...
- java实现一个简单的Web服务器
注:本段内容来源于<JAVA 实现 简单的 HTTP服务器> 1. HTTP所有状态码 状态码 状态码英文名称 中文描述 100 Continue 继续.客户端应继续其请求 101 Swi ...
- 最简单的基于FFmpeg的移动端样例:Android 视频解码器-单个库版
===================================================== 最简单的基于FFmpeg的移动端样例系列文章列表: 最简单的基于FFmpeg的移动端样例:A ...
- Java语言实现简单FTP软件------>FTP软件主界面的实现(四)
首先看一下该软件的整体代码框架 1.首先介绍程序的主入口FTPMain.java,采用了一个漂亮的外观风格 package com.oyp.ftp; im ...
随机推荐
- Spring Data JPA @Column 注解无效 打出的语句有下划线
最近再写一个Restful API的小例子,遇到这样一个问题,在Spring Boot 下使用CrudRepository,总是提示如下错误: Caused by: java.sql.SQLSynta ...
- 【UOJ Round #1】
枚举/DP+排列组合 缩进优化 QAQ我当时一直在想:$min\{ \sum_{i=1}^n (\lfloor\frac{a[i]}{x}\rfloor + a[i] \ mod\ x) \}$ 然而 ...
- scala编程第16章学习笔记(1)
List列表的基本操作 head方法获得列表的第一个元素 tail方法获得列表除第一个元素之外的其它元素 isEmpty:判断列表是否为空,空的话返回真 last:获得列表最后一个元素 init:获得 ...
- Git-忽略规则.gitignore生效
Git中如果忽略掉某个文件,不让这个文件提交到版本库中,可以使用修改根目录中 .gitignore 文件的方法,如下这个文件每一行保存了一个匹配的规则例如,忽略单个文件或者整个目录的文件: *.css ...
- (十一) 整合spring cloud云架构 - SSO单点登录之OAuth2.0登录流程(2)
上一篇是站在巨人的肩膀上去研究OAuth2.0,也是为了快速帮助大家认识OAuth2.0,闲话少说,我根据框架中OAuth2.0的使用总结,画了一个简单的流程图(根据用户名+密码实现OAuth2.0的 ...
- Android -- Interpolator
Interpolator 被用来修饰动画效果,定义动画的变化率,可以使存在的动画效果accelerated(加速),decelerated(减速),repeated(重复),bounced(弹跳)等. ...
- [Functional Programming] Arrow Functor with contramap
What is Arrow Functor? Arrow is a Profunctor that lifts a function of type a -> b and allows for ...
- ASP.NET MVC 基于页面的权限管理
菜单表 namespace AspNetMvcAuthDemo1.Models { public class PermissionItem { public int ID { set; get; } ...
- AI单挑Dota 2世界冠军:被电脑虐哭……
OpenAI的机器人刚刚在 Dota2 1v1 比赛中战胜了人类顶级职业玩家 Denti.以建设安全的通用人工智能为己任的 OpenAI,通过“Self-Play”的方式,从零开始训练出了这个机器人. ...
- C# list与数组互相转换
1,从System.String[]转到List<System.String>System.String[] str={"str","string" ...