15 MySQL--索引
索引:
http://www.cnblogs.com/linhaifeng/articles/7356064.html
http://www.cnblogs.com/linhaifeng/articles/7274563.html
1.为什么要索引:
sql 读写:10:1 读操作会出现性能问题; 优化查询是 重中之重;
索引: 为优化查询得提供得一种数据结构;键; primary key unique key都是索引 # foreign key 不是;
primary key : 主键;
unique key : 唯一 索引;
index key: 普通索引
索引: 相当于书得目录; 缩小范围,减少查询次数 ,从而提升查询效率;
io次数越少,查询效率越高; 索引就是尽可能多的减少io次数;
http://www.cnblogs.com/linhaifeng/articles/7274563.html 索引: 读快 写会慢得 每新增一条数据 索引都会变化 不要盲目加索引,加多了 写会变慢得
2.Innodb存储引擎 索引分为:聚集索引,辅助索引;
主键: Innodb 为什么必须要有主键, Innodb 会自动建索引,先在表里找主键;若没有 不为空且唯一 默认设为主键 若没有,mysql会有隐藏得字段设为主键
以后可以基于主键 优化查询;
聚集索引: 叶子节点 存放得是 一整行得完整记录;
以后查询时,用id作为查询依据,可以加速查询; where id = 1; 用 where name=''; 其他字段就不能提高查询效率; 辅助索引:就是对其他字段专门做索引。
和聚集索引区别;
聚集索引:叶子存放一整行记录
辅助索引:放字段 eg:name 值,主键得引用(id) select * from user where name = 'alice' 先拿name 辅助索引,在拿id到聚集索引里面找 所有数据 加速查询:
where 限定查询:
select * from user . 遍历整张表 不能优化;
select xxx from user where .... # 找到特定得某样
找多页内容,目录 微乎其微; 范围查询,索引用处比较小 id=... name=... 效率才高 条件明确 存储过程:
循环,300万次;不同得记录; 索引在数据量比较大得时候,效果比较好
测试索引;http://www.cnblogs.com/linhaifeng/articles/7274563.html#_label6 select * from user; # 慢 效率低 一条一条遍历;
select count(id) from user where id = 1000; create index idx_id on user(id); # 建索引,慢 因为已经有数据了,把整个数据 都翻一遍 在做数据结构 索引; 插入数据也是比较慢得,因为要重新生成索引; select count(id) from user where id = 1000; 在查 就很快了
索引加速得好处了 如何正确使用索引;
联合索引;
覆盖索引;
一 介绍
1、为何要有索引?
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,
在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。
说起加速查询,就不得不提到索引了。
2、什么是索引
索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能
非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。
索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。
索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。
3、你是否对索引存在误解?
索引是应用程序设计和开发的一个重要方面。若索引太多,应用程序的性能可能会受到影响。而索引太少,对查询性能又会产生影响,
要找到一个平衡点,这对应用程序的性能至关重要。一些开发人员总是在事后才想起添加索引----我一直认为,这源于一种错误的开发模式。
如果知道数据的使用,从一开始就应该在需要处添加索引。开发人员往往对数据库的使用停留在应用的层面,比如编写SQL语句、存储过程之类,
他们甚至可能不知道索引的存在,或认为事后让相关DBA加上即可。DBA往往不够了解业务的数据流,而添加索引需要通过监控大量的SQL语句
进而从中找到问题,这个步骤所需的时间肯定是远大于初始添加索引所需的时间,并且可能会遗漏一部分的索引。当然索引也并不是越多越好,
我曾经遇到过这样一个问题:某台MySQL服务器iostat显示磁盘使用率一直处于100%,经过分析后发现是由于开发人员添加了太多的索引,
在删除一些不必要的索引之后,磁盘使用率马上下降为20%。可见索引的添加也是非常有技术含量的。
二、索引的原理
索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。
相似的例子还有:查字典,查火车车次,飞机航班等
本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,
也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。 数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据, 1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。 但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个 关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能, 每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
三、磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可
以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms
以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次
,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两
个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要
知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换
句话说执行一次IO的时间可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。
下图是计算机硬件延迟的对比图,供大家参考:
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的
数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会
很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是
我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
四、索引的数据结构
前面讲了索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是
凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就
是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路
搜索树是否能满足需求呢?就这样,b+树应运而生(B+树是通过二叉查找树,再由平衡二叉树,B树演化而来)。
如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到
每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,
P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、
9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项
,如17、35并不真实存在于数据表中。
###b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29
在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁
盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内
存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的
数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共
需要百万次的IO,显然成本非常非常高。
###b+树性质
1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的
数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁
盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为
什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放
到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建
立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同
再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节
点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)
这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到
,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
五、聚集索引与辅助索引
在数据库中,B+树的高度一般都在2~4层,这也就是说查找某一个键值的行记录时最多只需要2到4次IO,这倒不错。因为
当前一般的机械硬盘每秒至少可以做100次IO,2~4次的IO意味着查询时间只需要0.02~0.04秒。
数据库中的B+树索引可以分为聚集索引(clustered index)和辅助索引(secondary index),
聚集索引与辅助索引相同的是:不管是聚集索引还是辅助索引,其内部都是B+树的形式,即高度是平衡的,叶子结点存放着所有的数据。
聚集索引与辅助索引不同的是:叶子结点存放的是否是一整行的信息
1、聚集索引
#InnoDB存储引擎表示索引组织表,即表中数据按照主键顺序存放。而聚集索引(clustered index)就是按照每张表的主键构造一棵B+树,同时叶子结点
存放的即为整张表的行记录数据,也将聚集索引的叶子结点称为数据页。聚集索引的这个特性决定了索引组织表中数据也是索引的一部分。同B+树数据结构一样
,每个数据页都通过一个双向链表来进行链接。 #如果未定义主键,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚簇索引。 #如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚簇索引。 #由于实际的数据页只能按照一棵B+树进行排序,因此每张表只能拥有一个聚集索引。在多少情况下,查询优化器倾向于采用聚集索引。因为聚集索引能够在
B+树索引的叶子节点上直接找到数据。此外由于定义了数据的逻辑顺序,聚集索引能够特别快地访问针对范围值得查询。
聚集索引的好处之一:它对主键的排序查找和范围查找速度非常快,叶子节点的数据就是用户所要查询的数据。
如用户需要查找一张表,查询最后的10位用户信息,由于B+树索引是双向链表,所以用户可以快速找到最后一
个数据页,并取出10条记录
#参照第六小结测试索引的准备阶段来创建出表s1
mysql> desc s1; #最开始没有主键
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec) mysql> explain select * from s1 order by id desc limit 10; #Using filesort,需要二次排序
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2633472 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
1 row in set, 1 warning (0.11 sec) mysql> alter table s1 add primary key(id); #添加主键
Query OK, 0 rows affected (13.37 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select * from s1 order by id desc limit 10; #基于主键的聚集索引在创建完毕后就已经完成了排序,无需二次排序
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | index | NULL | PRIMARY | 4 | NULL | 10 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.04 sec)
聚集索引的好处之二:范围查询(range query),即如果要查找主键某一范围内的数据,通过叶子节点的上
层中间节点就可以得到页的范围,之后直接读取数据页即可
mysql> alter table s1 drop primary key;
Query OK, 2699998 rows affected (24.23 sec)
Records: 2699998 Duplicates: 0 Warnings: 0 mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.12 sec) mysql> explain select * from s1 where id > 1 and id < 1000000; #没有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2690100 | 11.11 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec) mysql> alter table s1 add primary key(id);
Query OK, 0 rows affected (16.25 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select * from s1 where id > 1 and id < 1000000; #有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 1343355 | 100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.09 sec)
2、辅助索引
表中除了聚集索引外其他索引都是辅助索引(Secondary Index,也称为非聚集索引),与聚集索引的区别是:
辅助索引的叶子节点不包含行记录的全部数据。
叶子节点除了包含键值以外,每个叶子节点中的索引行中还包含一个书签(bookmark)。该书签用来告诉
InnoDB存储引擎去哪里可以找到与索引相对应的行数据。
由于InnoDB存储引擎是索引组织表,因此InnoDB存储引擎的辅助索引的书签就是相应行数据的聚集索引键。
如下图
辅助索引的存在并不影响数据在聚集索引中的组织,因此每张表上可以有多个辅助索引,但只能有一个聚集索
引。当通过辅助索引来寻找数据时,InnoDB存储引擎会遍历辅助索引并通过叶子级别的指针获得只想主键索引
的主键,然后再通过主键索引来找到一个完整的行记录。
举例来说,如果在一棵高度为3的辅助索引树种查找数据,那需要对这个辅助索引树遍历3次找到指定主键,如果
聚集索引树的高度同样为3,那么还需要对聚集索引树进行3次查找,最终找到一个完整的行数据所在的页,因此
一共需要6次逻辑IO访问才能得到最终的一个数据页。
六、MySQL索引管理
1、功能
#1. 索引的功能就是加速查找
#2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能
2、MySQL常用的索引
普通索引INDEX:加速查找 唯一索引:
-主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
-唯一索引UNIQUE:加速查找+约束(不能重复) 联合索引:
-PRIMARY KEY(id,name):联合主键索引
-UNIQUE(id,name):联合唯一索引
-INDEX(id,name):联合普通索引
各索引的应用场景
举个例子来说,比如你在为某商场做一个会员卡的系统。 这个系统有一个会员表
有下列字段:
会员编号 INT
会员姓名 VARCHAR(10)
会员身份证号码 VARCHAR(18)
会员电话 VARCHAR(10)
会员住址 VARCHAR(50)
会员备注信息 TEXT 那么这个 会员编号,作为主键,使用 PRIMARY
会员姓名 如果要建索引的话,那么就是普通的 INDEX
会员身份证号码 如果要建索引的话,那么可以选择 UNIQUE (唯一的,不允许重复) #除此之外还有全文索引,即FULLTEXT
会员备注信息 , 如果需要建索引的话,可以选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,如果就一两行字的,普通的 INDEX 也可以。
但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索。 #其他的如空间索引SPATIAL,了解即可,几乎不用
3、索引的两大类型hash与btree
#我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) #不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
4、创建/删除索引的语法
#方法一:创建表时
CREATE TABLE 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY
[索引名] (字段名[(长度)] [ASC |DESC])
); #方法二:CREATE在已存在的表上创建索引
CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名
ON 表名 (字段名[(长度)] [ASC |DESC]) ; #方法三:ALTER TABLE在已存在的表上创建索引
ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX
索引名 (字段名[(长度)] [ASC |DESC]) ; #删除索引:DROP INDEX 索引名 ON 表名字;
#方式一
create table t1(
id int,
name char,
age int,
sex enum('male','female'),
unique key uni_id(id),
index ix_name(name) #index没有key
); #方式二
create index ix_age on t1(age); #方式三
alter table t1 add index ix_sex(sex); #查看
mysql> show create table t1;
| t1 | CREATE TABLE `t1` (
`id` int(11) DEFAULT NULL,
`name` char(1) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`sex` enum('male','female') DEFAULT NULL,
UNIQUE KEY `uni_id` (`id`),
KEY `ix_name` (`name`),
KEY `ix_age` (`age`),
KEY `ix_sex` (`sex`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 示范
七、测试准备
1、数据准备
#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
); #2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,'egon','male',concat('egon',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号 #3. 查看存储过程
show create procedure auto_insert1\G #4. 调用存储过程
call auto_insert1();
执行select * from s1;
2、在没有索引的前提下测试查询速度
#无索引:mysql根本就不知道到底是否存在id等于333333333的记录,只能把数据表从头到尾扫描一遍,此时有多少个磁盘块就需要进行多少IO操作,所以查询速度很慢
mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)
3、在表中已经存在大量数据的前提下,为某个字段段建立索引,建立速度会很慢
在3的基础上建立好索引后
4、在索引建立完毕后,以该字段为查询条件时,查询速度提升明显
PS:
1. mysql先去索引表里根据b+树的搜索原理很快搜索到id等于333333333的记录不存在,IO大大降低,因而速度明显提升
2. 我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了
3. 需要注意,如下图
八、 总结
#1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id = 333;就需要为id加上索引 #2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快
比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。
建完以后,再查询就会很快了。 #3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI MySAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在innodb中,表数据文件本身就是按照B+Tree
(BTree即Balance True)组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据
表的主键,因此innodb表数据文件本身就是主索引。
因为inndob的数据文件要按照主键聚集,所以innodb要求表必须要有主键(Myisam可以没有),如果没有显式定义,
则mysql系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则mysql会自动为innodb表
生成一个隐含字段作为主键,这字段的长度为6个字节,类型为长整型.
15 MySQL--索引的更多相关文章
- 深入MySQL索引
MySQL索引作为数据库优化的常用手段之一在项目优化中经常会被用到, 但是如何建立高效索引,有效的使用索引以及索引优化的背后到底是什么原理?这次我们深入数据库索引,从索引的数据结构开始说起. 索引原理 ...
- MYSQL索引结构原理、性能分析与优化
[转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...
- MySQL索引原理及慢查询优化
原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...
- 【转】MySQL索引背后的数据结构及算法原理
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...
- [转]MySQL索引背后的数据结构及算法原理
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...
- mysql索引总结----mysql 索引类型以及创建
文章归属:http://feiyan.info/16.html,我想自己去写了,但是发现此君总结的非常详细.直接搬过来了 关于MySQL索引的好处,如果正确合理设计并且使用索引的MySQL是一辆兰博基 ...
- MySQL索引背后的数据结构及算法原理
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...
- (转)MySQL索引原理及慢查询优化
转自美团技术博客,原文地址:http://tech.meituan.com/mysql-index.html 建索引的一些原则: 1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到 ...
- MySQL索引简述
文章归属:http://feiyan.info/16.html,我想自己总结,但是发现此君总结的非常详细.直接搬过来了 关于MySQL索引的好处,如果正确合理设计并且使用索引的MySQL是一辆兰博基尼 ...
- mysql索引的使用和优化
参考: http://blog.csdn.net/xluren/article/details/32746183 http://www.cnblogs.com/hustcat/archive/2009 ...
随机推荐
- NOSQL之REDIS
Redis是NoSQL中比较常典型的一个非关系型数据库,在日常工作中也是最为常见的.Redis是一个由C语言编写的开源的.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value数据 ...
- mac 下 mysql 安装
1. 下载安装文件: 下载地址:https://dev.mysql.com/downloads/mysql/ 下载后缀名为dmg的安装文件 2. 启动mysql 安装后,打开"系统偏好设置& ...
- django 获取前端获取render模板渲染后的html
function GetProxyServerByGroup(ths, action){ var _html = $.ajax({ url: "/nginx/get_proxy_server ...
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- linux 信号处理 二 (信号的默认处理)
今天碰到一个SIGHUP问题,再复习一遍: 有些信号的默认处理方式为“终止+core”,这里的core表示,进程终止时,会在进程的当前工作目录生产一个core文件,该文件是进程终止时的内存快照,以便以 ...
- 创建一个包括菜单栏,工具栏,状态栏,文本编辑部件的经典GUI应用程序的骨架
效果如下: 代码如下: #!/usr/bin/python3 # -*- coding: utf-8 -*- """ This program creates a ske ...
- 关于启动tomcatINFO警告错误问题解决
关于启动tomcatINFO警告错误问题解决: #apr 与 tomcat-native 提供更好的伸缩性.性能和集成到本地服务器技术.如果没有apr技术,启动tomcat 时出现如下提示:INFO: ...
- python给字典排序
应用场景: 统计一篇文章中单词的出现频率,然后进行排序 利用sorted函数,返回一个已经排序好的list,但不改变原来的数据结构 In [1]: dt = {'a':3,'b':2,'c':1} I ...
- Mybatis -代码自动生成(generatorConfig.xml)
参考:http://blog.csdn.net/jinshiyill/article/details/51546676 官方网址: http://www.mybatis.org/generator/c ...
- 新手搭建 nginx + php (LNMP)
配置源 纯净的Centos 6.5系统 配置163yum源 (这个比较简单,百度能解决很多问题) 开始 安装 开发软件包:yum -y groupinstall "Developmen ...