一、GPT(Generative Pre-Training)

  GPT-2的模型非常巨大,它其实是Transformer的Decoder。GPT-2是Transformer的Decoder部分,输入一个句子中的上一个词,我们希望模型可以得到句子中的下一个词。

  由于GPT-2的模型非常巨大,它在很多任务上都达到了惊人的结果,甚至可以做到zero-shot learning(简单来说就是模型的迁移能力非常好),如阅读理解任务,不需要任何阅读理解的训练集,就可以得到很好的结果。

GPT-2可以自己进行写作

0-5层与0-5head的对应:

 参考文献:

【1】李宏毅机器学习2019(国语)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili

Transformer---GPT模型的更多相关文章

  1. 模型压缩95%:Lite Transformer,MIT韩松等人

    模型压缩95%:Lite Transformer,MIT韩松等人 Lite Transformer with Long-Short Range Attention Zhanghao Wu, Zhiji ...

  2. RealFormer: 残差式 Attention 层的Transformer 模型

    原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer ...

  3. 从零搭建Pytorch模型教程(三)搭建Transformer网络

    ​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. ...

  4. 【python量化】将Transformer模型用于股票价格预测

    本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transfor ...

  5. 4. OpenAI GPT算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

  6. X-former:不止一面,你想要的Transformer这里都有

    原创作者 | FLPPED 参考论文: A Survey of Transformers 论文地址: https://arxiv.org/abs/2106.04554 研究背景: Transforme ...

  7. 从Seq2seq到Attention模型到Self Attention

    Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一.Seq2seq被广泛应用在机器翻译.聊天机器人甚至是图像生成文字等情境. ...

  8. 谷歌BERT预训练源码解析(二):模型构建

    目录前言源码解析模型配置参数BertModelword embeddingembedding_postprocessorTransformerself_attention模型应用前言BERT的模型主要 ...

  9. L12 Transformer

    Transformer 在之前的章节中,我们已经介绍了主流的神经网络架构如卷积神经网络(CNNs)和循环神经网络(RNNs).让我们进行一些回顾: CNNs 易于并行化,却不适合捕捉变长序列内的依赖关 ...

  10. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

随机推荐

  1. vue项目关闭eslint校验

    [前言] eslint是一个JavaScript的校验插件,通常用来校验语法或代码的书写风格.这篇文章主要介绍了vue项目关闭eslint校验,需要的朋友可以参考下 [主体] 简介eslint esl ...

  2. 并发编程学习笔记(七、Thread源码分析)

    目录: 常见属性 构造函数 start() run() 常见属性: /** * 线程名称 */ private volatile String name; /** * 线程优先级 */ private ...

  3. Python socket & socket server

    socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket(套接字). 建立网络通信连接至少要一对socket.socket是对TCP/IP的封装 使用方法 ...

  4. LinkCutTree学习笔记

    LinkCutTree 学习笔记 参考来源 https://www.zybuluo.com/xzyxzy/note/1027479 https://www.cnblogs.com/zhoushuyu/ ...

  5. vue v-show的使用

    v-show的功能和v-if基本一样,但是v-if有衍生的v-else-if和v-else,v-show没有 v-show的性能比v-if要好,能用v-show就不要用v-if v-if是删除dom节 ...

  6. 洛谷P1283 平板涂色 &&一本通1445:平板涂色

    题目描述 CE数码公司开发了一种名为自动涂色机(APM)的产品.它能用预定的颜色给一块由不同尺寸且互不覆盖的矩形构成的平板涂色. 为了涂色,APM需要使用一组刷子.每个刷子涂一种不同的颜色C.APM拿 ...

  7. 10.7 csp-s模拟测试63 Median+Game+Park

    我堕落了 我觉得任牛逼的问题也是我的问题 T1 Median T2 Game T3 Park

  8. windows xp 安装后不能能ping,浏览器不能上网

    windows xp MSDN版本 下载地址: ed2k://|file|zh-hans_windows_xp_home_with_service_pack_3_x86_cd_x14-92408.is ...

  9. Pytest 使用简介

    前言 最近在听极客时间的课程,里面的讲师极力推崇 pytest 框架,鄙视 unittest 框架,哈哈!然后查了些资料,发现了一条 python 鄙视链:pytest 鄙视 > unittes ...

  10. 车位iou计算

    车位检测中,判断多帧图像检测出的车位是否是同一个车位.计算其IOU. 判断一个点是否在一个四边形内 Approach : Let the coordinates of four corners be ...