一、Hadoop的局限

HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统。

要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通过 HDFS 来存储结构化、半结构甚至非结构化的数据,它是传统数据库的补充,是海量数据存储的最佳方法,它针对大文件的存储,批量访问和流式访问都做了优化,同时也通过多副本解决了容灾问题。

但是 Hadoop 的缺陷在于它只能执行批处理,并且只能以顺序方式访问数据,这意味着即使是最简单的工作,也必须搜索整个数据集,无法实现对数据的随机访问。实现数据的随机访问是传统的关系型数据库所擅长的,但它们却不能用于海量数据的存储。在这种情况下,必须有一种新的方案来解决海量数据存储和随机访问的问题,HBase 就是其中之一 (HBase,Cassandra,couchDB,Dynamo 和 MongoDB 都能存储海量数据并支持随机访问)。

注:数据结构分类:

  • 结构化数据:即以关系型数据库表形式管理的数据;
  • 半结构化数据:非关系模型的,有基本固定结构模式的数据,例如日志文件、XML 文档、JSON 文档、Email 等;
  • 非结构化数据:没有固定模式的数据,如 WORD、PDF、PPT、EXL,各种格式的图片、视频等。

二、HBase简介

HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统。

HBase 是一种类似于 Google’s Big Table 的数据模型,它是 Hadoop 生态系统的一部分,它将数据存储在 HDFS 上,客户端可以通过 HBase 实现对 HDFS 上数据的随机访问。它具有以下特性:

  • 不支持复杂的事务,只支持行级事务,即单行数据的读写都是原子性的;
  • 由于是采用 HDFS 作为底层存储,所以和 HDFS 一样,支持结构化、半结构化和非结构化的存储;
  • 支持通过增加机器进行横向扩展;
  • 支持数据分片;
  • 支持 RegionServers 之间的自动故障转移;
  • 易于使用的 Java 客户端 API;
  • 支持 BlockCache 和布隆过滤器;
  • 过滤器支持谓词下推。

三、HBase Table

HBase 是一个面向 的数据库管理系统,这里更为确切的而说,HBase 是一个面向 列族 的数据库管理系统。表 schema 仅定义列族,表具有多个列族,每个列族可以包含任意数量的列,列由多个单元格(cell )组成,单元格可以存储多个版本的数据,多个版本数据以时间戳进行区分。

下图为 HBase 中一张表的:

  • RowKey 为行的唯一标识,所有行按照 RowKey 的字典序进行排序;
  • 该表具有两个列族,分别是 personal 和 office;
  • 其中列族 personal 拥有 name、city、phone 三个列,列族 office 拥有 tel、addres 两个列。

图片引用自 : HBase 是列式存储数据库吗 https://www.iteblog.com/archives/2498.html

Hbase 的表具有以下特点:

  • 容量大:一个表可以有数十亿行,上百万列;

  • 面向列:数据是按照列存储,每一列都单独存放,数据即索引,在查询时可以只访问指定列的数据,有效地降低了系统的 I/O 负担;

  • 稀疏性:空 (null) 列并不占用存储空间,表可以设计的非常稀疏 ;

  • 数据多版本:每个单元中的数据可以有多个版本,按照时间戳排序,新的数据在最上面;

  • 存储类型:所有数据的底层存储格式都是字节数组 (byte[])。

四、Phoenix

Phoenix 是 HBase 的开源 SQL 中间层,它允许你使用标准 JDBC 的方式来操作 HBase 上的数据。在 Phoenix 之前,如果你要访问 HBase,只能调用它的 Java API,但相比于使用一行 SQL 就能实现数据查询,HBase 的 API 还是过于复杂。Phoenix 的理念是 we put sql SQL back in NOSQL,即你可以使用标准的 SQL 就能完成对 HBase 上数据的操作。同时这也意味着你可以通过集成 Spring Data JPAMybatis 等常用的持久层框架来操作 HBase。

其次 Phoenix 的性能表现也非常优异,Phoenix 查询引擎会将 SQL 查询转换为一个或多个 HBase Scan,通过并行执行来生成标准的 JDBC 结果集。它通过直接使用 HBase API 以及协处理器和自定义过滤器,可以为小型数据查询提供毫秒级的性能,为千万行数据的查询提供秒级的性能。同时 Phoenix 还拥有二级索引等 HBase 不具备的特性,因为以上的优点,所以 Phoenix 成为了 HBase 最优秀的 SQL 中间层。

参考资料

  1. HBase - Overview

更多大数据系列文章可以参见 GitHub 开源项目大数据入门指南

HBase 系列(一)—— HBase 简介的更多相关文章

  1. Hbase系列文章

    Hbase系列文章 HBase(一): c#访问hbase组件开发 HBase(二): c#访问HBase之股票行情Demo HBase(三): Azure HDInsigt HBase表数据导入本地 ...

  2. Hbase系列-Hbase简介

    自1970年以来,关系数据库用于数据存储和维护有关问题的解决方案.大数据的出现后,好多公司实现处理大数据并从中受益,并开始选择像 Hadoop 的解决方案.Hadoop使用分布式文件系统,用于存储大数 ...

  3. hbase系列之:独立模式部署hbase

    一.概述 在上一篇博文中,我简要介绍了hbase的部分基础概念,如果想初步了解hbase的理论,可以参看上一篇博文 hbase系列之:初识hbase .本博文主要介绍独立模式下部署hbase及hbas ...

  4. HBase 系列(三)HBase Shell

    HBase 系列(三)HBase Shell ./hbase shell # 进入 hbase 命令行 (1) HBase 命令帮助 help # 查看 HBase 所有的命令 create # 或 ...

  5. HBase 系列(二)安装部署

    HBase 系列(二)安装部署 本节以 Hadoop-2.7.6,HBase-1.4.5 为例安装 HBase 环境.HBase 也有三种模式:本地模式.伪分布模式.分布模式. 一.环境准备 (1) ...

  6. Hbase 系列(一)基本概念

    Hbase 系列(一)基本概念 HBase 是 Apache 旗下一个高可靠性.高性能.面向列.可伸缩的分布式存储系统.利用 HBase 技术可在廉价 PC 服务器上搭建起大规模的存储化集群.使用 H ...

  7. 大数据技术之_11_HBase学习_01_HBase 简介+HBase 安装+HBase Shell 操作+HBase 数据结构+HBase 原理

    第1章 HBase 简介1.1 什么是 HBase1.2 HBase 特点1.3 HBase 架构1.3 HBase 中的角色1.3.1 HMaster1.3.2 RegionServer1.3.3 ...

  8. HBase 系列(二)—— HBase 系统架构及数据结构

    一.基本概念 一个典型的 Hbase Table 表如下: 1.1 Row Key (行键) Row Key 是用来检索记录的主键.想要访问 HBase Table 中的数据,只有以下三种方式: 通过 ...

  9. HBase 系列(五)——HBase 常用 Shell 命令

    一.基本命令 打开 Hbase Shell: # hbase shell 1.1 获取帮助 # 获取帮助 help # 获取命令的详细信息 help 'status' 1.2 查看服务器状态 stat ...

  10. HBase 系列(八)——HBase 协处理器

    一.简述 在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求.在这种情况下,协处理 ...

随机推荐

  1. python url码转换 chr()码

    爬虫生成带搜索词语的网址 1.字符串转为url编码 import urllib poet_name = "李白" url_code_name = urllib.quote(poet ...

  2. Web Components 入门实例教程

    转自阮一峰http://www.ruanyifeng.com/blog/2019/08/web_components.html 组件是前端的发展方向,现在流行的 React 和 Vue 都是组件框架. ...

  3. Docker容器CPU、memory资源限制

    背景 在使用 docker 运行容器时,默认的情况下,docker没有对容器进行硬件资源的限制,当一台主机上运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU.内存和磁盘资源.如果不 ...

  4. <每日 1 OJ> -LeetCode 28. 实现 strStr()

    题目: 实现 strStr() 函数. 给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始).如果不存 ...

  5. 迁移学习、fine-tune和局部参数恢复

    参考:迁移学习——Fine-tune 一.迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练. 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段. 训练 分为两种策 ...

  6. Spring Cloud上下文:应用程序上下文服务

    Spring Boot对于如何使用Spring构建应用程序有一个看法:例如它具有常规配置文件的常规位置,以及用于常见管理和监视任务的端点.Spring Cloud建立在此之上,并添加了一些可能系统中所 ...

  7. 干掉搜狗输入法云代理SogouCloud.exe

    搜狗输入法暂时还离不开,但是很讨厌搜狗输入法一直在后台的"搜狗云代理程序"(C:\Program Files (x86)\SogouInput\9.1.0.2657\SogouCl ...

  8. Torch-Models 别人训练的FastNeuralStyle

    This is the pink style's image: This is the triangle one: The fire ones come from this image: And th ...

  9. 【NWJS】解析node-webkit(NWJS)的打包和发布

    目录结构: contents structure [-] 下载和安装node-webkit 建立一个简单的WEB应用 生成EXE可执行文件 修改icon 封包 Enigma Virtual Box I ...

  10. ios 报错 Invalid row height provided by table delegate. Value must be at least 0.0, or UITableViewAutomaticDi......

    Invalid row height provided by table delegate. Value must be at least 0.0, or UITableViewAutomaticDi ...