今天开始学习tensorflow框架,从极客学院下载了官方中文教程(15年翻译的),第一天开始学习第一章ng基本流程和原理,作为前奏。然后写了代码,验证一下,准确率确实非常高,非常好用。把代码上传,作为以后备用。

 import tensorflow as tf
import numpy as np
import math class Model:
def __init__(self,w = np.empty(None),b = None):
self.b = b
self.w = w def predict(self, input):
return np.dot(input,self.w) + self.b data = np.float32(np.random.rand(1000,2))
label = np.dot(data,np.array([[0.100],[0.200]])) + 0.3
m,n = data.shape num_train = int(m * 0.6)
num_validation = int(m * 0.2)
num_test = int(m * 0.2) data_train = data[:num_train,:]
data_validation = data[num_train:(num_train+num_validation),:]
data_test = data[(num_train+num_validation):,:] label_train = label[:num_train,:]
label_validation = label[num_train:(num_train+num_validation),:]
label_test = label[(num_train+num_validation):,:] w = tf.Variable(tf.random_uniform([2,1],-1.0,1.0))
b = tf.Variable(tf.zeros([1])) y_train = tf.matmul(data_train,w) + b
loss = tf.reduce_mean(tf.square(label_train - y_train))
'''
bestModel = Model()
minRMSE = (1 << 31) -1
alphas = [0.1,0.3,0.5];
iters = [100,150,200,250];
for iter in iters:
for alpha in alphas:
optimizer = tf.train.GradientDescentOptimizer(alpha)
train = optimizer.minimize(loss)
init_state = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_state)
for step in range(0,iter):
sess.run(train)
model = Model(sess.run(w),sess.run(b))
p = model.predict(data_validation)
rmse = np.sqrt(np.mean(np.square(label_validation - p)))
if rmse < minRMSE:
minRMSE = rmse
bestModel = model
np.save("E:\\Python\\models\\weights.npy",bestModel.w)
np.save("E:\\Python\\models\\b.npy",bestModel.b)
''' weights = np.load("E:\\Python\\models\\weights.npy")
b = np.load("E:\\Python\\models\\b.npy") model = Model(weights,b)
predicts = model.predict(data_test)
print(predicts)
print(label_test)
print(label_test - predicts)

tensorflow学习(一)的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. 用tensorflow学习贝叶斯个性化排序(BPR)

    在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简 ...

  3. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  4. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  5. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  6. TensorFlow学习路径【转】

    作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  7. TensorFlow学习线路

    如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/ans ...

  8. tensorflow学习资料

    tensorflow学习资料 http://www.soku.com/search_video/q_tensorflow?f=1&kb=04112020yv41000__&_rp=1a ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  10. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

随机推荐

  1. C#下IOC/依赖注入框架Grace介绍

    对依赖注入或控制反转不了解的童鞋请先自行学习一下这一设计,这里直接介绍项目和实现步骤. Grace是一个开源.轻巧.易用同时特性丰富.性能优秀的依赖注入容器框架.从这篇IOC容器评测文章找到的Grac ...

  2. Javascript判断参数类型

    function (options, param) { alert(typeof options); if (typeof options == "string") { alert ...

  3. K8S使用问题汇总

    1,报错如下 Warning: kubectl apply should be used on resource created by either kubectl create --save-con ...

  4. 2019 龙采科技java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.龙采科技等公司offer,岗位是Java后端开发,最终选择去了龙采科技. 面试了很多家公司,感觉大部分公司考察的点 ...

  5. 2019 58同城java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.58同城等公司offer,岗位是Java后端开发,最终选择去了58同城. 面试了很多家公司,感觉大部分公司考察的点 ...

  6. Python DBUtils 连接池对象 (PooledDB)

    数据处理框架用到 mysql, 需要在多进程中的多线程中使用 mysql 的连接 使用到的模块: DBUtils 实现: 使用 DBUtils 中的 PooledDB 类来实现. 自己写一个类, 继承 ...

  7. P1018 乘积最大(DP)

    题目 P1018 乘积最大 解析 区间DP 设\(f[i][j]\)表示选\(i\)个数,插入\(j\)个乘号时的最大值 设\(num[i][j]\)是\(s[i,j]\)里的数字 转移方程就是\(f ...

  8. Flask框架 请求与响应 & 模板语法

    目录 Flask框架 请求与响应 & 模板语法 简单了解Flask框架 Flask 框架 与 Django 框架对比 简单使用Flask提供服务 Flask 中的 Response(响应) F ...

  9. MES选型很困惑?避开这三个禁忌!

    MES系统的选型除了要充分剖析自己企业,掌握自己企业的需要.信息化的目标.自身的特点外,还要完全了解MES系统供应商,对其实力.软件性能.服务.用户.软件实施速度.价格进行了解与分析,这也是MES系统 ...

  10. 雪妖现世:给SAP Fiori Launchpad增添雪花纷飞的效果

    1995年7月,台湾大宇公司发布了一款国产单机角色扮演游戏神作:<仙剑奇侠传1>,所谓"一包烟,一杯茶",就能在电脑面前坐一整天. 这么经典的游戏Jerry当然已经通关 ...