CF696B Puzzles 概率期望
有一棵树,共有 $N$ 个节点,他会使用下列 $DFS$ 算法对该树进行遍历:
starting_time是一个容量为n的数组
current_time = 0
dfs(v):
current_time =current_time+1
starting_time[v] = current_time
将children[v]的顺序随机排列 (每个排列的概率相同)
// children[v]v的直接儿子组成的数组
for u in children[v]:
dfs(u)
1是这棵树的根,Bob会从1出发,即运行dfs(1),现在他想知道每个点 starting_time的期望值
令 $f[i]$ 表示访问到 $i$ 时的期望时间.
那么,如果说直接由 $i$ 的父亲到 $i$ 的话,$f[i]=f[fa]+1$
但是,$fa$ 的儿子中除了 $i$ 都有可能在 $i$ 之前访问.
这个概率为 $\frac{1}{2}$ 即之前/之后.
所以,$f[i]=f[fa]+1+\frac{size[fa]-size[i]-1}{2}$
#include <bits/stdc++.h>
#define N 100005
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,edges;
double f[N];
int hd[N],to[N<<1],nex[N<<1],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs1(int u,int ff)
{
size[u]=1;
for(int i=hd[u];i;i=nex[i]) dfs1(to[i],u), size[u]+=size[to[i]];
}
void dfs2(int u,int ff)
{
if(u!=1) f[u]=f[ff]+1.0+(double)(size[ff]-size[u]-1)/2.0;
for(int i=hd[u];i;i=nex[i]) dfs2(to[i],u);
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
for(i=2;i<=n;++i)
{
int ff;
scanf("%d",&ff), add(ff,i);
}
dfs1(1,0);
f[1]=1.0;
dfs2(1,0);
for(i=1;i<=n;++i) printf("%.1lf ",f[i]);
return 0;
}
CF696B Puzzles 概率期望的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- uvalive 7331 Hovering Hornet 半平面交+概率期望
题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...
- OI队内测试一【数论概率期望】
版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...
- 2016 多校联赛7 Balls and Boxes(概率期望)
Mr. Chopsticks is interested in random phenomena, and he conducts an experiment to study randomness. ...
- 牛客网多校赛第9场 E-Music Game【概率期望】【逆元】
链接:https://www.nowcoder.com/acm/contest/147/E 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...
- 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...
- [LnOI2019]加特林轮盘赌(DP,概率期望)
[LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...
- 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
随机推荐
- Pycharm安装文档教程
1 找到安装包 双击 2 3 可以更改安装路径 4 5 6 7 等待安装完成 8 作者:含笑半步颠√ 博客链接:https://www.cnblogs.com/lixy-88428977 声明:本文为 ...
- VirtualBox导入OVA文件文档教程
1 2 修改框住的路径,最好不要在C盘 3 取消检查更新 4 5 6 7 8 9 10 11 等待加载完成:加载完成后 OVA文件导入成功 作者:含笑半步颠√ 博客链接:https://www.cnb ...
- 全栈项目|小书架|服务器开发-Koa2中间件机制洋葱模型了解一下
KOA2 是什么? Koa是一个新的 web 框架,由 Express 幕后的原班人马打造, 致力于成为 web 应用和 API 开发领域中的一个更小.更富有表现力.更健壮的基石. 通过利用 asyn ...
- 4_PHP流程控制语句_3_程序跳转和终止语句
以下为学习孔祥盛主编的<PHP编程基础与实例教程>(第二版)所做的笔记. PHP流程控制共有3种类型:条件控制结构.循环结构以及程序跳转和终止语句. 4.3 程序跳转和终止语句 4.3.1 ...
- 聊聊GIS中的坐标系|再版
本文约6500字,建议阅读时间15分钟. 作者:博客园/B站/知乎/csdn/小专栏 @秋意正寒 版权:转载请告知,并在转载文上附上转载声明与原文链接(https://www.cnblogs.com/ ...
- TR-业务流程图
今天看到一篇关于票据业务的培训文档,介绍比较全面,分享下: https://wenku.baidu.com/view/f3dd3ee988eb172ded630b1c59eef8c75ebf9577. ...
- PHP基础之输出缓冲区基本概念、原理分析
一.概念 在PHP运行的过程中,可以将会产生输出的函数或操作结果暂时保存在PHP的缓冲区,只有当缓冲区满了.或者PHP运行完毕.或者在必要时候进行输出,才会将数据输出到浏览器,此缓冲数据的区域称为PH ...
- CentOS7- ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548988705
CentOS7重启后,xshell连接,后出现ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548 ...
- Beta版本冲刺
一.团队成员 团队名称 西柚排课王 项目名称 易奇排排课系统 团队成员 秦傲明 201731062308 韩浩 201731062319 黄青松 201731062322 王越豪 2017310623 ...
- generator 和yeild
参考 https://www.cnblogs.com/xybaby/p/6322376.html 使用yield那么该函数就变成了一个生成器方法. def zheng(n,m): if n<m: ...