本题目要求一元二次方程的根,结果保留2位小数。

输入格式:

输入在一行中给出3个浮点系数a、b、c,中间用空格分开。

输出格式:

根据系数情况,输出不同结果:

1)如果方程有两个不相等的实数根,则每行输出一个根,先大后小;

2)如果方程有两个不相等复数根,则每行按照格式“实部+虚部i”输出一个根,先输出虚部为正的,后输出虚部为负的;

3)如果方程只有一个根,则直接输出此根;

4)如果系数都为0,则输出"Zero Equation";

5)如果a和b为0,c不为0,则输出"Not An Equation"。

输入样例1:

2.1 8.9 3.5

输出样例1:

-0.44
-3.80

输入样例2:

1 2 3

输出样例2:

-1.00+1.41i
-1.00-1.41i

输入样例3:

0 2 4

输出样例3:

-2.00

输入样例4:

0 0 0

输出样例4:

Zero Equation

输入样例5:

0 0 1

输出样例5:

Not An Equation
按求根公式来,但注意纯虚根不要在0前加负号。
代码:
#include <stdio.h>
#include <math.h>
int main() {
double a,b,c;
scanf("%lf%lf%lf",&a,&b,&c);
if(a == && b == && c == ) printf("Zero Equation\n");
else if(a == && b == && c != ) printf("Not An Equation\n");
else if(a == ) printf("%.2f\n",-c / b);
else {
double det = b * b - * a * c,aa = a * ;
if(det == ) printf("%.2f\n",-b / aa);
else if(det > ) printf("%.2f\n%.2f\n",(-b + sqrt(det)) / aa,(-b - sqrt(det)) / aa);
else printf("%.2f+%.2fi\n%.2f-%.2fi\n",(b == ? b : -b) / aa,sqrt(-det) / aa,(b == ? b : -b) / aa,sqrt(-det) / aa);
}
return ;
}

实验3-1 求一元二次方程的根 (20 分) 《C语言程序设计实验与习题指导(第3版)》的更多相关文章

  1. OpenJudge计算概论-求一元二次方程的根【含复数根的计算、浮点数与0的大小比较】

    /*====================================================================== 求一元二次方程的根 总时间限制: 1000ms 内存限 ...

  2. 计算概论(A)/基础编程练习1(8题)/4:求一元二次方程的根

    #include<stdio.h> #include<math.h> int main() { // 待解方程数目 int n; scanf("%d", & ...

  3. 基于linux或windows的c/s的循环服务器求一元二次方程的根

    在linux和windows上实现 c/s模式 socket循环服务器求解一元二次方程的根 ax^2+bx+c=0 根据上式,客户端发送a,b,c给服务器,返回求解的根 暂未考虑非法数据等问题 lin ...

  4. Openjudge-计算概论(A)-求一元二次方程的根

    描述: 利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2 + bx + c =0的根 ...

  5. C++分支结构,求一元二次方程的根

    总时间限制:  1000ms 内存限制:  65536kB 描述 利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/ ...

  6. 求一元二次方程的根【double型的0输出%.2lf为-0.00】

    #include <bits/stdc++.h> using namespace std; #define LL long long #define eps 1e-6 int main() ...

  7. ocrosoft 1015 习题1.22 求一元二次方程a*x^2 + b*x + c = 0的根

    http://acm.ocrosoft.com/problem.php?id=1015 题目描述 求一元二次方程a*x2 + b*x + c = 0的根.系数a.b.c为浮点数,其值在运行时由键盘输入 ...

  8. 用c#求一元二次方程

    题目:编一个程序,输入a .b.c 的值,求出一元二次方程a*x*x+b*x+c=0的二个实数根. 我的思路: 我们都知道数学中求一元二次方程有很多方法:直接开方法.配方法.公式法.分解因式法等等,在 ...

  9. 【Python实践-1】求一元二次方程的两个解

    知识点: import sys, sys模块包含了与Python解释器和它的环境有关的函数. “sys”是“system”的缩写.sys.exit() 中途退出程序, (注:0是正常退出,其他为不正常 ...

随机推荐

  1. 把ubuntu自带的高gcc版本降到低版本(如gcc 3.4)的方法

    转载自: 博客1.博客2 .博客3 步骤 第一步: 下载所需gcc安装包(.deb格式) 手动:老版本gcc下载地址:http://old-releases.ubuntu.com/ubuntu/poo ...

  2. shell(一) shell变量

    基本介绍 变量命名规范 变量名要求由字母.数字.下划线组成,尽量字母开头,有明确含义 注意:变量赋值时,等号前后不能有空格,变量名称不能和字体变量冲突 自定义变量 当前shell有效 1.定义变量 v ...

  3. 微慕WordPress小程序增强版

    2017年1月9日,张小龙在2017微信公开课Pro上发布的微信小程序正式上线.在过去的2年多的时间里,微信小程序领头,各大互联网平台也不甘落后,陆续推出自己的小程序.2018年7月4日,百度智能小程 ...

  4. MPI linux Ubuntu cluster 集群

    在局域网内安装mpi,并进行并行计算.MPICH3. 下载源码: wget http://www.mpich.org/static/downloads/3.3.1/mpich-3.3.1.tar.gz ...

  5. Linux常用基础(二)

    1.压缩包管理 (1)gz和bz2格式 1)gzip -- gz格式的压缩包 压缩:gzip +压缩的文件 解压缩:gunzip + 需要解压的文件 2)bzip2 -- bz2格式的压缩包 压缩:b ...

  6. [转帖]systemd 开机无法启动privoxy

    systemd 开机无法启动privoxy https://www.cnblogs.com/liuxuzzz/p/5329536.html 此博客不在更新,我的博客新地址:www.liuquanhao ...

  7. 观察者(Observer)模式

    观察者模式又叫做发布-订阅模式(Publish.Subscribe)模式.模型-视图模式(Model/View)模式.源-监听器模式(Source/Listener)模式或从属者(Dependents ...

  8. 『异或粽子 堆 可持久化trie』

    异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿 ...

  9. linux或者shell进入vi命令

    vi的基本操作 a) 进入vi     在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面: $ vi file  不过有一点要特别注意,就是您进入vi之后,是处于「命令行模式(comman ...

  10. 使用IDEA创建maven父子工程项目

    http://www.pianshen.com/article/3070289153/ 第一步: 打开IDEA,点击create new project,如果没有弹出如下界面,就先将打开的项目关闭,然 ...