[LeetCode] 1123. Lowest Common Ancestor of Deepest Leaves 最深叶结点的最小公共父节点
Given a rooted binary tree, return the lowest common ancestor of its deepest leaves.
Recall that:
- The node of a binary tree is a leaf if and only if it has no children
- The depth of the root of the tree is 0, and if the depth of a node is
d
, the depth of each of its children isd+1
. - The lowest common ancestor of a set
S
of nodes is the nodeA
with the largest depth such that every node in S is in the subtree with rootA
.
Example 1:
Input: root = [1,2,3]
Output: [1,2,3]
Explanation:
The deepest leaves are the nodes with values 2 and 3.
The lowest common ancestor of these leaves is the node with value 1.
The answer returned is a TreeNode object (not an array) with serialization "[1,2,3]".
Example 2:
Input: root = [1,2,3,4]
Output: [4]
Example 3:
Input: root = [1,2,3,4,5]
Output: [2,4,5]
Constraints:
- The given tree will have between 1 and 1000 nodes.
- Each node of the tree will have a distinct value between 1 and 1000.
这道题让我们求一棵二叉树中最深叶结点的最小公共父结点 Lowest Common Ancestor,在 LeetCode 中,有两道关于 LCA 的题,分别是 [Lowest Common Ancestor of a Binary Tree](http://www.cnblogs.com/grandyang/p/4641968.html) 和 [Lowest Common Ancestor of a Binary Search Tree](http://www.cnblogs.com/grandyang/p/4640572.html),但是显然这道题要更加的复杂一些,因为最深的叶结点的个数不确定,可能会有1个,2个,甚至多个,那么其最小公共父节点的位置也就有多种可能的位置。对于二叉树的问题,刷题老司机们应该都知道,十有八九都是用递归来做,这道题也不例外。在毫无头绪的时候,就先从最简单的情况开始分析吧,假如 root 为空,则直接返回 nullptr,假如 root 没有子结点,其本身就是最深叶结点,返回 root。若 root 有左右子结点,说明左右子树存在,通常情况下我们会对左右子结点调用递归,那么返回的就是左右子树分别的最深叶结点的最小公共父节点,但是问题来了,就算分别知道了左右子树的最深结点的 LCA,怎么推出当前树的 LCA?若左子树的最深叶结点的深度更深,则应该返回左子树的 LCA,若右子树的最深叶结点的深度更深,则应该返回右子树的 LCA,若二者一样深,则要返回当前结点。这样的话,对于每个结点 node,必须要分别知道其左右子树的最深叶结点的深度才行,可以使用一个 getDepth 函数来求任意结点到叶结点的最大深度,叶结点本身的深度为0。有了这个函数,就可以对当前结点的左右子结点计算深度,若深度相同,则返回当前结点,否则对深度大的子结点调用递归,怎么隐约感觉有些二分搜索法的影子在里面,参见代码如下:
解法一:
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
if (!root) return nullptr;
int left = getDepth(root->left), right = getDepth(root->right);
if (left == right) return root;
return (left > right) ? lcaDeepestLeaves(root->left) : lcaDeepestLeaves(root->right);
}
int getDepth(TreeNode* node) {
if (!node) return 0;
return 1 + max(getDepth(node->left), getDepth(node->right));
}
};
由于计算深度的函数 getDepth 存在大量的重复计算,可以使用一个 HashMap 来保存已经算过深度的结点,这样再次遇到的时候,直接从 HashMap 中取值即可,可以使计算效率更高一些,参见代码如下:
解法二:
class Solution {
public:
unordered_map<TreeNode*, int> m;
TreeNode* lcaDeepestLeaves(TreeNode* root) {
if (!root) return nullptr;
int left = getDepth(root->left, m), right = getDepth(root->right, m);
if (left == right) return root;
return (left > right) ? lcaDeepestLeaves(root->left) : lcaDeepestLeaves(root->right);
}
int getDepth(TreeNode* node, unordered_map<TreeNode*, int>& m) {
if (!node) return 0;
if (m.count(node)) return m[node];
return m[node] = 1 + max(getDepth(node->left, m), getDepth(node->right, m));
}
};
我们也可以把计算 LCA 和深度放到一个子函数中,让子函数 helper 既返回以当前结点为根结点的子树的最深叶结点的 LCA,又返回当前结点的深度。在递归函数 helper 中,首先判空,若为空,则返回由 nullptr 和0组成的 pair 对儿。否则分别对左右子结点调用递归函数,若左结点的深度大,则返回左子结点和左子结点深度加1组成的 pair 对儿;若右子结点的深度大,则返回右子结点和右子结点深度加1组成的 pair 对儿;剩下的情况就是左右子结点的深度相同,返回当前结点和左子结点深度加1组成的 pair 对儿即可,参见代码如下:
解法三:
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
return helper(root).first;
}
pair<TreeNode*, int> helper(TreeNode* node) {
if (!node) return {nullptr, 0};
auto left = helper(node->left), right = helper(node->right);
if (left.second > right.second) return {left.first, left.second + 1};
if (left.second < right.second) return {right.first, right.second + 1};
return {node, left.second + 1};
}
};
再来看一种很类似的写法,这里用了两个全局变量,全局最深叶结点的最小公共父节点 res,以及全局的最大深度 deepest。跟上面的解法思路很类似,也是在递归函数 helper 中既算 lCA 又算深度,同时还要更新全局的 res 和 deepest。递归函数还需要一个参数 cur,用来保存当前结点的深度,首先用 cur 来更新最大深度 deepest,再判空,若 node 为空,直接返回 cur。再对左右子结点调用递归函数,假如此时左右子结点返回的深度都等于最大深度 deepest,说明当前结点 node 就是要求的 LCA,赋值给结果 res,然后返回 left 和 right 中的较大值,就是当前结点 node 的深度,参见代码如下:
解法四:
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
TreeNode *res;
int deepest = 0;
helper(root, 0, deepest, res);
return res;
}
int helper(TreeNode* node, int cur, int& deepest, TreeNode*& res) {
deepest = max(deepest, cur);
if (!node) return cur;
int left = helper(node->left, cur + 1, deepest, res);
int right = helper(node->right, cur + 1, deepest, res);
if (left == deepest && right == deepest) {
res = node;
}
return max(left, right);
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1123
类似题目:
Lowest Common Ancestor of a Binary Tree
Lowest Common Ancestor of a Binary Search Tree
参考资料:
https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/
[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)
[LeetCode] 1123. Lowest Common Ancestor of Deepest Leaves 最深叶结点的最小公共父节点的更多相关文章
- LeetCode 1123. Lowest Common Ancestor of Deepest Leaves
原题链接在这里:https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/ 题目: Given a rooted b ...
- 【leetcode】1123. Lowest Common Ancestor of Deepest Leaves
题目如下: Given a rooted binary tree, return the lowest common ancestor of its deepest leaves. Recall th ...
- 1123. Lowest Common Ancestor of Deepest Leaves
link to problem Description: Given a rooted binary tree, return the lowest common ancestor of its de ...
- Leetcode之深度优先搜索(DFS)专题-1123. 最深叶节点的最近公共祖先(Lowest Common Ancestor of Deepest Leaves)
Leetcode之深度优先搜索(DFS)专题-1123. 最深叶节点的最近公共祖先(Lowest Common Ancestor of Deepest Leaves) 深度优先搜索的解题详细介绍,点击 ...
- [LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最近公共祖先
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] 236. Lowest Common Ancestor of a Binary Tree 二叉树的最近公共祖先
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- leetcode@ [236] Lowest Common Ancestor of a Binary Tree(Tree)
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/ Given a binary tree, find the ...
- LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] 236. Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
随机推荐
- Linux高性能服务器编程,书中的 shell 命令
记录<Linux高性能服务器编程>书里面讲解到的若干 shell 命令 arp 命令查看ARP高速缓存: [root@VM_0_10_centos heliang]# arp -a ? ( ...
- Unity Shader NPR 卡通渲染
卡通渲染的主要原理包含两个方面: 1.轮廓线的描边效果 2.模型漫反射离散和纯色高光区域的模拟 描边: 描边的实现方法采用将模型的轮廓线顶点向法线(或顶点)的方向扩展一定的像素得到.也可通过边缘检测( ...
- CentOS 下安装 Cmake 步骤
最近在虚拟机中的 CentOS 中安装 Cmake.把安装步骤记录在此. 什么是 Cmake CMake 是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各 ...
- webstorm关闭烦人的eslint语法检查
使用了eslint语法检查之后发现JS代码里面处处是红线,通过右键菜单中的fix eslint problems选项又会发现页面代码的格式被eslint换行得不分青红皂白,索性关闭exlint语法检查 ...
- JVM的监控工具之jstat
参考博客:https://www.cnblogs.com/lxcmyf/p/9878293.html jstat(JVMStatisticsMonitoringTool)是用于监视虚拟机各种运行状态信 ...
- java的Class<T>与类型信息
类型是一个数据符号,代表着数据的内存布局和访问规则. default public <T> T xxxxx(Class<T> xclass) throws Exception ...
- [Flutter] Windows桌面程序开发
在今年5月的谷歌I/O 2019大会时, 谷歌就宣布了flutter已经支持全平台开发, 包括 android, ios, mac, linux, windows, web 等 . Flutter桌面 ...
- .net Dapper 学习系列(1) ---Dapper入门
目录 写在前面 为什么选择Dapper 在项目中安装Dapper 在项目中使用Dapper 在项目中使用Dapper 进行单表增删改数据操作 总结 写在前面 Dapper 是一款轻量级ORM架构.为解 ...
- c# 修改系统日期格式
引用 using System.Runtime.InteropServices; [DllImport("kernel32.dll", EntryPoint = "Get ...
- redis笔记2
分布式锁的实现 锁是用来解决什么问题的; 一个进程中的多个线程,多个线程并发访问同一个资源的时候,如何解决线程安全问题. 一个分布式架构系统中的两个模块同时去访问一个文件对文件进行读写操作 多个应用对 ...