Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据
相关度评分 TF&IDF算法
Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequency算法,简称为TF/IDF算法。
算法介绍:
- relevance score算法:简单来说就是,就是计算出一个索引中的文本,与搜索文本,它们之间的关联匹配程度。
- TF/IDF算法:分为两个部分,IF 和IDF
- Term Frequency(TF): 搜索文本中的各个词条在field文本中出现了多少次,出现的次数越多,就越相关
例如:
搜索请求:hello world
doc1: hello you, and world is very good
doc2: hello, how are you
那么此时根据TF算法,doc1的相关度要比doc2的要高 - Inverse Document Frequency(IDF):搜索文本中的各个词条在整个索引的所有文档中出现的次数,出现的次数越多,就越不相关。
搜索请求: hello world
doc1: hello, today is very good.
doc2: hi world, how are you.
比如在index中有1万条document, hello这个单词在所有的document中,一共出现了1000次,world这个单词在所有的document中一共出现100次。那么根据IDF算法此时doc2的相关度要比doc1要高。 - field-length norm:field-length norm就是field长度越长,相关度就越弱
搜索请求:hello world
doc1: {"title": "hello article", "content": "1万个单词"}
doc2: {"title": "my article", "content": "1万个单词, hi world"}
此时hello world在整个index中出现的次数是一样多的。但是根据Field-length norm此时doc1比doc2相关度要高。因为title字段更短。
_score是如何被计算出来的
GET /test_index/test_type/_search?explain
{
"query": {
"match": {
"test_field": "test hello"
}
}
}
{
"took": ,
"timed_out": false,
"_shards": {
"total": ,
"successful": ,
"failed":
},
"hits": {
"total": ,
"max_score": 0.843298,
"hits": [
{
"_shard": "[test_index][2]",
"_node": "1LdqLFqxQQq4xg2MphI_gw",
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": 0.843298,
"_source": {
"test_field": "test test"
},
"_explanation": {
"value": 0.843298,
"description": "sum of:",
"details": [
{
"value": 0.843298,
"description": "sum of:",
"details": [
{
"value": 0.843298,
"description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 0.843298,
"description": "score(doc=0,freq=2.0 = termFreq=2.0\n), product of:",
"details": [
{
"value": 0.6931472,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": ,
"description": "docFreq",
"details": []
},
{
"value": ,
"description": "docCount",
"details": []
}
]
},
{
"value": 1.2166219,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": ,
"description": "termFreq=2.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 1.75,
"description": "avgFieldLength",
"details": []
},
{
"value": 2.56,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
},
{
"value": ,
"description": "match on required clause, product of:",
"details": [
{
"value": ,
"description": "# clause",
"details": []
},
{
"value": ,
"description": "_type:test_type, product of:",
"details": [
{
"value": ,
"description": "boost",
"details": []
},
{
"value": ,
"description": "queryNorm",
"details": []
}
]
}
]
}
]
}
},
{
"_shard": "[test_index][1]",
"_node": "1LdqLFqxQQq4xg2MphI_gw",
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": 0.43445712,
"_source": {
"test_field": "test client 2"
},
"_explanation": {
"value": 0.43445715,
"description": "sum of:",
"details": [
{
"value": 0.43445715,
"description": "sum of:",
"details": [
{
"value": 0.43445715,
"description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 0.43445715,
"description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
"details": [
{
"value": 0.47000363,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": ,
"description": "docFreq",
"details": []
},
{
"value": ,
"description": "docCount",
"details": []
}
]
},
{
"value": 0.92436975,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": ,
"description": "termFreq=1.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 3.3333333,
"description": "avgFieldLength",
"details": []
},
{
"value": ,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
},
{
"value": ,
"description": "match on required clause, product of:",
"details": [
{
"value": ,
"description": "# clause",
"details": []
},
{
"value": ,
"description": "_type:test_type, product of:",
"details": [
{
"value": ,
"description": "boost",
"details": []
},
{
"value": ,
"description": "queryNorm",
"details": []
}
]
}
]
}
]
}
},
{
"_shard": "[test_index][3]",
"_node": "1LdqLFqxQQq4xg2MphI_gw",
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": 0.25316024,
"_source": {
"test_field": "test client 1"
},
"_explanation": {
"value": 0.25316024,
"description": "sum of:",
"details": [
{
"value": 0.25316024,
"description": "sum of:",
"details": [
{
"value": 0.25316024,
"description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 0.25316024,
"description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
"details": [
{
"value": 0.2876821,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": ,
"description": "docFreq",
"details": []
},
{
"value": ,
"description": "docCount",
"details": []
}
]
},
{
"value": 0.88,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": ,
"description": "termFreq=1.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": ,
"description": "avgFieldLength",
"details": []
},
{
"value": ,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
},
{
"value": ,
"description": "match on required clause, product of:",
"details": [
{
"value": ,
"description": "# clause",
"details": []
},
{
"value": ,
"description": "*:*, product of:",
"details": [
{
"value": ,
"description": "boost",
"details": []
},
{
"value": ,
"description": "queryNorm",
"details": []
}
]
}
]
}
]
}
}
]
}
}
doc value正排索引
在我们搜索的时候,要依靠倒排索引,但是当我们排序的时候,需要依靠正排索引。通过倒排索引锁定文档document之后,看到每个document的每个field,然后进行排序,所谓的正排索引就是doc values。
对于ES而言,在建立索引的时候,一方面会建立倒排索引,以供搜索使用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等使用。
doc values是被保存在磁盘上的,此时如果内存足够,OS操作系统会自动将其缓存在内存中,性能还是会很高的,如果内存不够用,OS操作系统会将其写入磁盘。
下面举个例子描述正排索引和倒排索引
假设某个index有两个doc
doc1 : hello world you and me
doc2 : hi world, how are you
建立倒排索引
word doc1 doc2
hello *
world * *
you * *
and *
me *
hi *
how *
are *
假设某个index有两个doc
doc1: {"name": "jack", "age": }
doc2: {"name": "tom", "age": }
建立正排索引
document name age
doc1 jack
doc2 tom
解密query、fetch phrase原理
query pharse
基本原理:
- 搜索请求发送到某一个coordinate node协调节点,会构建一个priority queue,长度以paging操作from和size为准,默认是10
- coordinate node将请求转发到所有的shard,每个shard本地搜索,并构建一个本地的priority queue
- 各个shard将自己的priority queue返回给coordinate node,并构建一个全局的priority queue
fetch phrase
基本原理:
- coordinate node协调节点构建完priority queue之后,就发送mget请求去所有shard上获取对应的document
- 各个shard将document返回给coordinate node
- coordinate node将合并后的document结果返回给客户端。
也就是ES的query pharse是根据priority queue去构建搜索结果的
示例
比如总共有60000条数据,三个primary shard,每个shard上分了20000条数据,每页是10条数据,这个时候,你要搜索到第1000页,实际上要拿到的是10001~10010,也就是会构建一个10010大小的priority queue。
注意这里千万不要理解成每个shard都是返回10条数据。这样理解是错误的!
下面做一下详细的分析:
请求首先可能是打到一个不包含这个index的shard的node上去,这个node就是一个协调节点coordinate node,那么这个coordinate node就会将搜索请求转发到index的三个shard所在的node上去。比如说我们之前说的情况下,要搜索60000条数据中的第1000页,实际上每个shard都要将内部的20000条数据中的第10001~10010条数据,拿出来,不是才10条,是10010条数据。3个shard的每个shard都返回10010条数据给协调节点coordinate node,coordinate node会收到总共30030条数据,此时会构建一个30030大小的priority queue,然后在这些数据中进行排序,根据_score相关度分数,然后取到10001~10010这10条数据,就是我们要的第1000页的10条数据。
如下图所示:
Bouncing Results问题
想象一下有两个文档有同样值的时间戳字段,搜索结果用 timestamp 字段来排序。 由于搜索请求是在所有有效的分片副本间轮询的,那就有可能发生主分片处理请求时,这两个文档是一种顺序, 而副本分片处理请求时又是另一种顺序。
bouncing results 问题::每次用户刷新页面,搜索结果表现是不同的顺序。 让同一个用户始终使用同一个分片,这样可以避免这种问题, 可以设置 preference 参数为一个特定的任意值比如用户会话ID来解决。
偏好这个参数 preference 允许 用来控制由哪些分片或节点来处理搜索请求。 它接受像 _primary, _primary_first, _local, _only_node:xyz, _prefer_node:xyz, 和 _shards:2,3 这样的值, 这些值在 search preference 文档页面被详细解释。
但是最有用的值是某些随机字符串,它可以避免 bouncing results 问题。- timeout:已经讲解过原理了,主要就是限定在一定时间内,将部分获取到的数据直接返回,避免查询耗时过长
- routing:document文档路由,_id路由,routing=user_id,这样的话可以让同一个user对应的数据到一个shard上去
- search_type:默认default:query_then_fetch,dfs_query_then_fetch可以提升revelance sort精准度
基于scoll技术滚动搜索大量数据
在实际应用中,通过from+size不可避免会出现深分页的瓶颈,那么通过scoll技术就是一个很好的解决深分页的方法。比如如果我们一次性要查出10万条数据,那么使用from+size很显然性能会非常的差,priority queue会非常的大。此时如果采用scroll滚动查询,就可以一批一批的查,直到所有数据都查询完。
scroll原理
scoll搜索会在第一次搜索的时候,保存一个当时的视图快照,之后只会基于该旧的视图快照提供数据搜索,如果这个期间数据变更,是不会让用户看到的。而且ES内部是基于_doc进行排序的方式,性能较高。
示例:
# 使用scroll
POST /test_index/_search?scroll=1m
{
"query": {
"match_all": {}
},
"sort": [
"_doc"
],
"size":
}
获取到scroll_id
{
"_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAI-sFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACPqxYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3AAAAAAAAj68WMUxkcUxGcXhRUXE0eGcyTXBoSV9ndwAAAAAAAI-tFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACPrhYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3",
"took": ,
"timed_out": false,
"_shards": {
"total": ,
"successful": ,
"failed":
},
"hits": {
"total": ,
"max_score": null,
"hits": [
{
"_index": "test_index",
"_type": "test_type",
"_id": "AWypxxLYFCl_S-ox4wvd",
"_score": null,
"_source": {
"test_content": "my test"
},
"sort": [ ]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": null,
"_source": {
"test_field": "test test"
},
"sort": [ ]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": null,
"_source": {
"test_field": "test client 1"
},
"sort": [ ]
}
]
}
}
滚动搜索
# 滚动搜索
POST _search/scroll
{
"scroll":"1m",
"scroll_id":"DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAJDMFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACQzRYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3AAAAAAAAkM8WMUxkcUxGcXhRUXE0eGcyTXBoSV9ndwAAAAAAAJDOFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACQ0BYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3"
}
搜索结果
{
"_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAJDMFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACQzRYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3AAAAAAAAkM8WMUxkcUxGcXhRUXE0eGcyTXBoSV9ndwAAAAAAAJDOFjFMZHFMRnF4UVFxNHhnMk1waElfZ3cAAAAAAACQ0BYxTGRxTEZxeFFRcTR4ZzJNcGhJX2d3",
"took": ,
"timed_out": false,
"terminated_early": true,
"_shards": {
"total": ,
"successful": ,
"failed":
},
"hits": {
"total": ,
"max_score": null,
"hits": [
{
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": null,
"_source": {
"num": ,
"tags": []
},
"sort": [ ]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": null,
"_source": {
"test_field": "test client 2"
},
"sort": [ ]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "",
"_score": null,
"_source": {
"test_field": "test4"
},
"sort": [ ]
}
]
}
}
Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据的更多相关文章
- ElasticSearch(二十四)基于scoll技术滚动搜索大量数据
1.为什么要使用scroll? 如果一次性要查出来比如10万条数据,那么性能会很差,此时一般会采取用scoll滚动查询,一批一批的查,直到所有数据都查询完处理完 2.原理 使用scoll滚动搜索,可以 ...
- Elasticsearch学习之相关度评分TF&IDF
relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...
- ElasticSearch7.3学习(二十四)----相关度评分机制详解
1.算法介绍 relevance score(相关性分数) 算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度.Elasticsearch使用的是 term freque ...
- 55.TF/IDF算法
主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的 一.算法介绍 relevance score算法,简单来说 ...
- tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...
- tf–idf算法解释及其python代码
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- 25.TF&IDF算法以及向量空间模型算法
主要知识点: boolean model IF/IDF vector space model 一.boolean model 在es做各种搜索进行打分排序时,会先用boolean mo ...
- Elasticsearch的索引模块(正排索引、倒排索引、索引分析模块Analyzer、索引和搜索、停用词、中文分词器)
正向索引的结构如下: “文档1”的ID > 单词1:出现次数,出现位置列表:单词2:出现次数,出现位置列表:…………. “文档2”的ID > 此文档出现的关键词列表. 一般是通过key,去 ...
随机推荐
- Zabbix 监控阿里云RDS
简介 Zabbix 监控阿里云RDS数据库.主要通过阿里云提供的API来进行监控. 需要在阿里云获取“用户AccessKey”指定ID,进行RDS监控. 环境 服务:Zabbix 3.0.28.zab ...
- 【洛谷5438】【XR-2】记忆(数论)
[洛谷5438][XR-2]记忆(数论) 题面 洛谷 题解 很好的一道题目. 我们首先把所有数的每个质因子的出现次数模二,也就是把最大的完全平方因子给除掉.然后剩下部分一样的就可以产生\(1\)的贡献 ...
- Elastic 使用索引生命周期管理实现热温冷架构
Elastic: 使用索引生命周期管理实现热温冷架构 索引生命周期管理 (ILM) 是在 Elasticsearch 6.6(公测版)首次引入并在 6.7 版正式推出的一项功能.ILM 是 Elast ...
- 三维网格精简算法(Quadric Error Metrics)附源码(转载)
转载: https://www.cnblogs.com/shushen/p/5311828.html 在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接 ...
- Vert.x HTTP 服务器与客户端
编写HTTP 服务器与客户端 Vert.x让编写非阻塞的HTTP 服务器与客户端变得非常轻松. 创建HTTP 服务器 缺省状况: HttpServer server = vertx.createHtt ...
- 《深入理解Java虚拟机》并发(第12~13章)笔记
volatile关键字的作用 所有变量的可见性--仅仅是修改后的值的可见性,不保证并发修改时新值和预期一致.即只保证读,不保证写. 禁止指令重排序--修饰的变量,读写不会指令重排.如变量isReady ...
- synchronized和volatile使用
synchronized和volatile volatile :保证内存可见性,但是不保证原子性: synchronized:同步锁,既能保证内存可见性,又能保证原子性: synchronized实现 ...
- SAP MM 同一个序列号可以被多次用在交货单发货过账?
SAP MM 同一个序列号可以被多次用在交货单发货过账? 如下公司间转储订单,从公司代码CSAS转入公司代码HKCS, 物料有启用序列号管理. 转储数量为5 PC.该STO单据共计有2个外向交货单 8 ...
- HLAPI
和SPS硬件交互的API
- 编译器与Debug的传奇:Grace Murray Hopper小传
摘要: 改变世界的程序员前辈. 来自:http://www.road2stat.com/cn/network_3c/grace_murray_hopper.html 这两天读<UNIX痛恨者手册 ...