Given an integer n, return the number of trailing zeroes in n!.

Example 1:

Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.

Example 2:

Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.

Note: Your solution should be in logarithmic time complexity.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中 10 的个数,而 10 可分解为2和5,而2的数量又远大于5的数量(比如1到 10 中有2个5,5个2),那么此题即便为找出5的个数。仍需注意的一点就是,像 25,125,这样的不只含有一个5的数字需要考虑进去,参加代码如下:

C++ 解法一:

class Solution {
public:
int trailingZeroes(int n) {
int res = ;
while (n) {
res += n / ;
n /= ;
}
return res;
}
};

Java 解法一:

public class Solution {
public int trailingZeroes(int n) {
int res = 0;
while (n > 0) {
res += n / 5;
n /= 5;
}
return res;
}
}

这题还有递归的解法,思路和上面完全一样,写法更简洁了,一行搞定碉堡了。

C++ 解法二:

class Solution {
public:
int trailingZeroes(int n) {
return n == ? : n / + trailingZeroes(n / );
}
};

Java 解法二:

public class Solution {
public int trailingZeroes(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5);
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/172

类似题目:

Number of Digit One

Preimage Size of Factorial Zeroes Function

参考资料:

https://leetcode.com/problems/factorial-trailing-zeroes/

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52371/My-one-line-solutions-in-3-languages

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52373/Simple-CC%2B%2B-Solution-(with-detailed-explaination)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 172. Factorial Trailing Zeroes 求阶乘末尾零的个数的更多相关文章

  1. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. LeetCode 172. Factorial Trailing Zeroes (阶乘末尾零的数量)

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  3. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  4. 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  5. Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes

    题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...

  6. 172. Factorial Trailing Zeroes -- 求n的阶乘末尾有几个0

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  7. ✡ leetcode 172. Factorial Trailing Zeroes 阶乘中的结尾0个数--------- java

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  8. Java [Leetcode 172]Factorial Trailing Zeroes

    题目描述: Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be ...

  9. Leetcode 172 Factorial Trailing Zeroes

    给定一个数n 求出n!的末尾0的个数. n!的末尾0产生的原因其实是n! = x * 10^m 如果能将n!是2和5相乘,那么只要统计n!约数5的个数. class Solution { public ...

随机推荐

  1. Appium 环境配置

    前言 Appium 作为移动端自动化测试工具在业界非常流行,特别是在当前移动互联网背景下,很多公司基于此框架来开展自动化测试.但 appium 的环境配置相对 selenium 来说复杂的多,让很多同 ...

  2. Mac终端常用快捷键

    Ctrl + a 跳到行首Ctrl + e 跳到行尾Ctrl + d 删除一个字符,相当于通常的Delete键(命令行若无所有字符,则相当于exit:处理多行标准输入时也表示eof)Ctrl + h ...

  3. 阿里云容器服务中国最佳,进入 Forrester 报告强劲表现者象限

    近日,全球知名市场调研机构 Forrester 发布首个企业级公共云容器平台报告. 报告显示:阿里云容器服务创造了中国企业最好成绩,与谷歌云位于同一水平线,进入强劲表现者象限. 究其原因,分析师认为: ...

  4. Kubernetes 弹性伸缩全场景解读(二)- HPA 的原理与演进

    前言 在上一篇文章 Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局中,我们介绍了在 Kubernetes 在处理弹性伸缩时的设计理念以及相关组件的布局,在今天这篇文章中,会为大家 ...

  5. 转 Yolov3转化Caffe框架详解

    转自https://blog.csdn.net/watermelon1123/article/details/82083522 前些日子因工程需求,需要将yolov3从基于darknet转化为基于Ca ...

  6. 基于opencv 识别、定位二维码 (c++版)

    前言 因工作需要,需要定位图片中的二维码:我遂查阅了相关资料,也学习了opencv开源库.通过一番努力,终于很好的实现了二维码定位.本文将讲解如何使用opencv定位二维码. 定位二维码不仅仅是为了识 ...

  7. Json序列化与反序列化(对象与Json字符串的转换)--C#

    public class JsonHelper { #region Json序列化与反序列化 /// <summary> /// 将json转化为对象 /// (需要提前构造好结构一致的M ...

  8. WebApi使用Unity实现IOC

    最近在学习ASP.NET MVC,使用Unity作为依赖注入容器.分别在WebAPI和MVC中使用.这篇文章介绍WebAPI,MVC的在下篇文章中介绍.下面是学习的一点经验. 一 IOC简单介绍 Io ...

  9. java都是值传递,没有引用传递

    博主这几天在复习 javaSE 部分的内容时,遇到了关于参数传值的问题,但是始终不知道原因,上网上一查才知道钻牛角尖了,把C语言的参数传值转移到java中了. 相信很多在学习java之前,有接触过C/ ...

  10. AOD.NET实现数据库事物Transaction

    在开始介绍文章主要内容前先简单说一下事务 1.事务介绍 事务是一种机制.是一种操作序列,它包含了一组数据库操作命令,这组命令要么全部执行,要么全部不执行.因此事务是一个不可分割的工作逻辑单元.在数据库 ...