tensorflow API _ 5 (tensorflow.summary)
tensorflow
的可视化是使用summary
和tensorboard
合作完成的.
基本用法
首先明确一点,summary
也是op
.
输出网络结构
with tf.Session() as sess:
writer = tf.summary.FileWriter(your_dir, sess.graph)
命令行运行tensorboard --logdir your_dir
,然后浏览器输入127.0.1.1:6006
注:tf1.1.0 版本的tensorboard端口换了(0.0.0.0:6006)
这样你就可以在tensorboard
中看到你的网络结构图了
可视化参数
#ops
loss = ...
tf.summary.scalar("loss", loss)
merged_summary = tf.summary.merge_all()
init = tf.global_variable_initializer()
with tf.Session() as sess:
writer = tf.summary.FileWriter(your_dir, sess.graph)
sess.run(init)
for i in xrange(100):
_,summary = sess.run([train_op,merged_summary], feed_dict)
writer.add_summary(summary, i)
这时,打开tensorboard
,在EVENTS
可以看到loss
随着i
的变化了,如果看不到的话,可以在代码最后加上writer.flush()
试一下,原因后面说明。
函数介绍
tf.summary.merge_all
: 将之前定义的所有summary op
整合到一起FileWriter
: 创建一个file writer
用来向硬盘写summary
数据,tf.summary.scalar(summary_tags, Tensor/variable, collections=None)
: 用于标量的summary
tf.summary.image(tag, tensor, max_images=3, collections=None, name=None)
:tensor,必须4维,形状[batch_size, height, width, channels],max_images
(最多只能生成3张图片的summary
),觉着这个用在卷积中的kernel
可视化很好用.max_images
确定了生成的图片是[-max_images: ,height, width, channels],还有一点就是,TensorBord
中看到的image summary
永远是最后一个global step
的tf.summary.histogram(tag, values, collections=None, name=None)
:values,任意形状的tensor
,生成直方图summary
tf.summary.audio(tag, tensor, sample_rate, max_outputs=3, collections=None, name=None)
解释collections参数:它是一个list
,如果不指定collections, 那么此summary会被添加到f.GraphKeys.SUMMARIES
中,如果指定了,就会放在的collections
中。
FileWriter
注意:add_summary
仅仅是向FileWriter
对象的缓存中存放event data
。而向disk
上写数据是由FileWrite对象
控制的。下面通过FileWriter
的构造函数来介绍这一点!!!
tf.summary.FileWriter.__init__(logdir, graph=None, max_queue=10, flush_secs=120, graph_def=None)
Creates a FileWriter and an event file.
# max_queue: 在向disk写数据之前,最大能够缓存event的个数
# flush_secs: 每多少秒像disk中写数据,并清空对象缓存
注意
如果使用
writer.add_summary(summary,global_step)
时没有传global_step
参数,会使scarlar_summary
变成一条直线。只要是在计算图上的
Summary op
,都会被merge_all
捕捉到, 不需要考虑变量生命周期问题!- 如果执行一次,
disk
上没有保存Summary
数据的话,可以尝试下file_writer.flush()
小技巧
如果想要生成的summary有层次的话,记得在summary
外面加一个name_scope
with tf.name_scope("summary_gradients"):
tf.summary.histgram("name", gradients)
这样,tensorboard
在显示的时候,就会有一个sumary_gradients
一级目录
tensorflow API _ 5 (tensorflow.summary)的更多相关文章
- tensorflow API _ 1 (control_flow_ops.cond)
该函数用来控制程序执行流,相当于if-else了import tensorflow as tffrom tensorflow.python.ops import control_flow_ops a ...
- tensorflow API _ 6 (tf.gfile)
一.gfile模块是什么 tf.gfile模块的主要角色是:1.提供一个接近Python文件对象的API,以及2.提供基于TensorFlow C ++ FileSystem API的实现. C ++ ...
- tensorflow API _ 4 (Logging with tensorflow)
TensorFlow用五个不同级别的日志信息.为了升序的严重性,他们是调试DEBUG,信息INFO,警告WARN,错误ERROR和致命FATAL的.当你配置日志记录在任何级别,TensorFlow将输 ...
- tensorflow API _ 2 (tf.app.flags.FLAGS)
tf.app.flags.FLAGS 的使用,主要是在用命令行执行程序时,需要传些参数,代码如下:新建一个名为:app_flags.py 的文件. #coding:utf-8 import tens ...
- tensorflow API _ 4 (优化器配置)
"""Configures the optimizer used for training. Args: learning_rate: A scalar or `Tens ...
- tensorflow API _ 3 (tf.train.polynomial_decay)
学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): "&quo ...
- 13 Tensorflow API主要功能
要想使用Tensorflow API,首先要知道它能干什么.Tensorflow具有Python.C++.Java.Go等多种语言API,其中Python的API是最简单和好用的. Tensor Tr ...
- TensorFlow API 汉化
TensorFlow API 汉化 模块:tf 定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
随机推荐
- CentOS7-Docker 配置国内镜像源
Docker中国官方镜像加速 --registry-mirror=https://registry.docker-cn.com 网易163镜像加速 --registry-mirror=http://h ...
- MyBatis参数条件查询传入的值为0时的判断
MyBatis条件查询对字段判断是否为空一般为: <if test="testValue!=null and testValue != ''"> and test_va ...
- 洛谷--P1028 数的计算(递推)
题意:链接:https://www.luogu.org/problem/P1028 先输入一个自然数n (n≤1000) , 然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个自 ...
- Go基础编程实践(二)—— 类型转换
bool to string strconv包的FormatBool函数用于将bool转为string package main import ( "fmt" "strc ...
- 关于一致性hash,这可能是全网最形象生动最容易理解的文档,想做架构师的你来了解一下
问题提出 一致性hash是什么?假设有4台缓存服务器N0,N1,N2,N3,现在需要存储数据OBJECT1,OBJECT2,OBJECT3,OBJECT4,OBJECT5,OBJECT5,OBJECT ...
- Android Studio中设置与Eclipse中 Ctrl+1 功能类似的快捷键
Eclipse:Ctrl + 1 Android Studio: Alt + Enter 1. 首先当然是打开设置窗口啦,然后在IDE Settings 下找到Keymap 2. 在Keymap的搜索 ...
- CLRS10.2-7练习 - 翻转单向列表
要求: Give a Θ(n)-time nonrecursive procedure that reverses a singly linked list of nelements. The pro ...
- sublime text 打开总是弹框报错Unable to download ChineseLocalizations. Please view the console for more details.解决办法
本文链接:https://blog.csdn.net/qq_36435508/article/details/92805256 依次点击软件的 Preferences->Package S ...
- 【转载】 C#中使用decimal.Parse方法将字符串转换为十进制decimal类型
在C#编程过程中,很多时候涉及到数据类型的转换,例如将字符串类型的变量转换为十进制decimal类型就是一个常见的类型转换操作,decimal.Parse方法是C#中专门用来将字符串转换为decima ...
- python3基础之“术语表(2)”
51.编程: 让计算机执行的指令. 52.代码: 让计算机执行的命令. 53.底层编程语言: 与高级语言相比,更接近二进制的语言. 54.高级编程语言: 读起来像英语的易于理解的语言. 55.汇编语言 ...