Miller-Rabin

事先声明,因为菜鸡Hastin知识水平有限就是菜,因此语言可能不是特别规范,仅供理解.

step 0

问一个数\(p\)是否为质数,\(p<=10^{18}\).

一个简单暴力的办法是\(O( \sqrt{n})\)枚举约数.

然而显然会炸.

于是我们就有了Miller-Rabin.

讲了好多废话...

step 1

首先了解一下费马小定理:

若\(p\)为质数,则对于\(a\in[1,p-1]\)有\(a^{p}\equiv a(Mod\) \(p)\)

那么就有\(a^{p-1} \equiv 1( Mod\) \(p)\)

下面我们用数学归纳法来证明一下费马小定理:

显然\(a=1\)时结论成立,

若\(a=n\)时结论成立,

当\(a=n+1\)时,有

\((n+1)^p\)\(=\sum_{i=0}^{p}C_{p}^{i}n^{p-i}\)(二项式定理)

那么除了\(n^{p}\)和\(1\)这两项外,

其它的都有一个系数\(C_{p}^{i},i\in[1,p-1]\),所以都能被\(p\)整除.

而\(n^p\equiv n(Mod\) \(p)\),

所以\((n+1)^{p}\equiv n+1(Mod\) \(p)\),结论成立.

所以回到正题,如果对于一个数\(p\),存在\(a \in [1,p-1]\),\(a^{p-1}\not\equiv1(Mod\) \(p)\),则\(p\)一定不是质数.

然而仍然有一些数能够逃掉这种检测,

于是就有了

step 2

二次探测!

对于一个质数\(p\),若\(a \in[1,p-1]\),且\(a^2\equiv1(Mod\) \(p)\),则\(a=1\)或\(a=p-1\).

证明:

若\(a^2\equiv1(Mod\) \(p)\),则\(a^2-1\equiv 0(Mod\) \(p)\)

即\(p|(a+1)(a-1)\).

因为\(p\)为质数,且\(a\in [1,p-1]\),所以只有当\(a=1\)或\(a=p-1\)时上式才成立.

所以反过来想当\(a\)等于其它数时,\(p\)就不是质数了.

step 3

下面再来讲一下具体的实现.

首先大的思路是费马小定理,在中间用二次探测判定.

对于要判定的数\(p\),

设\(u=p-1\),则根据费马小定理有\(a^u\equiv 1(Mod\) \(p)\),\(a\in [1,p-1]\).

然后把\(u\)写成\(d*2^n\)的形式,也就是\((((d^2)^2)^2)^{2...}\)(n个2)

那么从\(d^2\)开始用二次探测判定,

最后再用费马小定理判定就行了.

而时间复杂度是\(O(log_{ \tiny 2}\) \(p)\).

并且一次的失误率是\(\frac{1}{4}\),

那么\(T\)次测试的失误率就是\(4^{-T}\),时间复杂度为\(O(Tlog_{\tiny 2}p)\),能够接受.

并且如果\(n<2^{64}\),只用选取\(a=2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\)测试即可.

code:(似乎要开int128)

#include <iostream>
#include <cstdio>
#include <cstring>
#define int __int128
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std; inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
} int p[101]={2,3,5,7,11,13,17,19,23,29,31,37};
int T,n,tot=12; inline int fpow(int a,int b,int p){
int ret=1;
for(;b;a=a*a%p,b>>=1) if(b&1) ret=ret*a%p;
return ret;
} inline bool Miller_Rabin(int n){
if(n<=2){
if(n==2) return 1;
return 0;
}
int u=n-1;
while(!(u%2)) u>>=1;
int d=u;
for(int i=0;i<tot&&p[i]<n;i++){
int x=p[i];u=d;x=fpow(x,u,n);
while(u<n){
int y=fpow(x,2,n);
if(y==1&&x!=1&&x!=n-1) return 0;
x=y;u<<=1;
}
if(x!=1) return 0;
}
return 1;
} signed main(){
T=read();
while(T--){
n=read();
if(Miller_Rabin(n)) puts("Yes");
else puts("No");
}
return 0;
}

[学习笔记] Miller-Rabin 质数测试的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  3. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. STM32学习笔记(十) CAN通讯测试(环回模式)

    1.CAN通讯的理解 想学习CAN通讯,那么要对通讯协议有一定的认知.通讯协议是指通信双方对数据传送控制的一种约定.约定中包括对数据格式,同步方式,传输速度,传送步骤,检纠错方式以及控制字符定义等问题 ...

  5. AMQ学习笔记 - 17. 事务的测试

    概述 对事务机制进行测试. 测试实例 测试实例 结果预测 发送正常 3条消息入队 发送异常 0条消息入队 接收正常 3条消息出队 接收异常 0条消息出队 demo设计 设计图 测试分工 测试类 测试方 ...

  6. AMQ学习笔记 - 18. 持久化的测试

    概述 对持久化的有效性进行测试. 测试实例 测试实例 结果预测 持久化递送 重启ActiveMQ后,消息还在队列中 非持久化递送 重启ActiveMQ后,消息不在队列中 demo设计 jms-prod ...

  7. IGS_学习笔记08_IREP通过soapUI测试客户化Web Service调用(案例)

    20150819 Created By BaoXinjian

  8. IGS_学习笔记07_IREP通过页面测试客户化Web Service调用(案例)

    20150819 Created By BaoXinjian

  9. Spring学习笔记6——注解方式测试

    需要下载junit-4.12.jar和hamcrest-all-1.3.jar,将下载好的包导入到项目当中. 修改TestSpring, 并运行1. @RunWith(SpringJUnit4Clas ...

  10. spring框架学习笔记1:搭建测试

    Spring框架介绍: Spring框架涵盖了web.service.dao三层,本身是一个存放对象的容器 形象来说:Spring是项目中对象管家 Spring框架的两大核心思想:控制反转(IOC). ...

随机推荐

  1. c++11多线程记录5: Unique Lock和延时初始化

    https://www.youtube.com/user/BoQianTheProgrammer 视频网址 Unique Lock unique_lock和lock_guard类似,都是mutex的w ...

  2. DELPHI6中DSGNINTF.DCU找不到时的解决方法

    https://www.cnblogs.com/gaodu2003/archive/2009/06/04/1495789.html 1.添加 lib\designide.dcp到控件的dpk文件的re ...

  3. DRF框架(四)——单整体改(put)、单局部改(patch)、群局部改(patch)

    单整体改   单指的是单独一条数据,整体指这条数据的所有字段都必须传值修改 基于上篇文章的代码修改,序列化层不用变,只修改views.py 1) 单整体改,说明前台要提供修改的数据,那么数据就需要校验 ...

  4. Windows状态栏图标显示异常

    1.新建TXT文档 2.写上以下代码 taskkill /im explorer.exe /f cd /d %userprofile%\appdata\local del iconcache.db / ...

  5. Dubbo使用javassist生成动态类

    在服务(本地和远程)暴露的时候会调用proxyFactory.getInvoker方法 具体位置: 本地暴露:ServiceConfig#exportLocal line:538 远程暴露: Serv ...

  6. MongoDB和Java(3):Java操作MongoB

    最近花了一些时间学习了下MongoDB数据库,感觉还是比较全面系统的,涉及了软件安装.客户端操作.安全认证.副本集和分布式集群搭建,以及使用Spring Data连接MongoDB进行数据操作,收获很 ...

  7. Win 10 无法锁屏,快捷键win+L失效

    快捷键win+L 一直在使用,忽然之间不知道按错了什么 Win 10 无法锁屏,快捷键win+L失效,按win+L后出来的是输入法 应该是键盘的Windows键锁住了,按Fn+windows键解锁

  8. VLC架构及流程分析

    0x00 前置信息 VLC是一个非常庞大的工程,我从它的架构及流程入手进行分析,涉及到一些很细的概念先搁置一边,日后详细分析. 0x01 源码结构(Android Java相关的暂未分析) # bui ...

  9. linux技能五 文件权限

    文件权限:-rw-r--r--.  1 fileInUser fileInGroup 1623 5月 4 19:33 fileName -:第一个-是文件类型 rw-:文件的所有者权限 r--:文件的 ...

  10. Python学习笔记-字符串与注释

    OSX从Pthon 2.7升级到3.8 1,官网下载最新安装包安装 2,执行认证文件command 3,执行设置path command 4,设置默认python 在terminal里运行open   ...