题意:
给一个序列a[1],a[2],a[3]...a[n],求其中连续的子序列A[L],A[L+1],...,A[R],使其权值 W(L,R)=(R-L+1)×gcd(A[L],...,A[R])最大。
输入格式
输入一行包含一个正整数n
接下来一行,包含N个正整数,
表示序列A_i
输出格式
输出文件包含一行一个正整数,表示权值最大的子序列的权值。
输入 #1
5
30 60 20 20 20
输出 #1
80
说明/提示
1≤Ai≤10^12,1≤N≤100000
可知一个数的质因数个数最多为logai次
那么对ai与其他a取gcd,最多有logai个值
那么记录下j的最左端点,使任意gcd(a_(j+k),...a_i)相同
算上求gcd,复杂度为O(nlog^2n)
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
int n,cnt[];
lol Gcd[][];
int lst[][];
lol a[];
lol ans;
lol gcd(lol a,lol b)
{
if (!b) return a;
return gcd(b,a%b);
}
lol max(lol a,lol b)
{
if (a>b) return a;
return b;
}
int main()
{int i,j;
cin>>n;
for (i=;i<=n;i++)
scanf("%lld",&a[i]);
for (i=;i<=n;i++)
{
cnt[i]=;
Gcd[i][cnt[i]]=a[i];
lst[i][cnt[i]]=i;
ans=max(ans,a[i]);
for (j=;j<=cnt[i-];j++)
{
cnt[i]++;
Gcd[i][cnt[i]]=gcd(Gcd[i][cnt[i]-],Gcd[i-][j]);
lst[i][cnt[i]]=lst[i-][j];
ans=max(ans,(lol)(i-lst[i][cnt[i]]+)*Gcd[i][cnt[i]]);
if (Gcd[i][cnt[i]]==Gcd[i][cnt[i]-])
{
cnt[i]--;
lst[i][cnt[i]]=lst[i-][j];
}
}
}
cout<<ans;
}
 
 

[JSOI2015]最大公约数的更多相关文章

  1. bzoj 4488 [Jsoi2015]最大公约数 结论+暴力

    [Jsoi2015]最大公约数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 302  Solved: 169[Submit][Status][Dis ...

  2. BZOJ4488: [Jsoi2015]最大公约数

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...

  3. BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...

  4. [BZOJ 4488][Jsoi2015]最大公约数

    传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...

  5. BZOJ4488 JSOI2015最大公约数

    显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...

  6. 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)

    洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...

  7. 2018年长沙理工大学第十三届程序设计竞赛 I 连续区间的最大公约数

    连续区间的最大公约数 思路:参照BZOJ 4488: [Jsoi2015]最大公约数脑补出的一个\(map\)套\(vector\)的写法,写起来比线段树短,运行时间比线段树快. 代码: #pragm ...

  8. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. 在laravel框架中使用模板继承来进行更方便的布局

    html中有很多东西是重复的,这是需要用到laravel的模板继承,来完成这样的简化操作. 父模板 既然时模板继承,那么就首先有一个父模板,父模板类似网页html中的头部和尾部,但又有一些不一样. / ...

  2. 数据分析-numpy的用法

    一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去 ...

  3. xorm插入数据实例

    package main import ( "fmt" _ "github.com/go-sql-driver/mysql" "github.com/ ...

  4. mysql 生成指定范围随机数

    生成随机数 生成0-3的随机数 SELECT RAND() * 3 最大不会超过3, SELECT FLOOR(RAND() * 3) 上面生成整数的值是0,1,2,3生成的随机整数是1,2,3的话, ...

  5. tkinter学习笔记_06

    12.弹窗 messagebox import tkinter as tk from tkinter import messagebox root = tk.Tk() root.title(" ...

  6. win7远程服务器发生身份验证错误,要求的函数不受支持

    远程服务器发生身份验证错误,要求的函数不受支持,远程登录服务器以前都是正常的,今天登录远程桌面就一直是这样的错误.记录一下解决方法. 方法一:卸载补丁KB41037181.打开控制面板,找到“程序和功 ...

  7. 浅谈ES6中super关键字

    作用: super 关键字用于访问父对象上的函数. 语法: super([arguments]); // 访问父对象上的构造函数 super.functionOnParent([arguments]) ...

  8. datagridview控件 索引-1没有值

    很多WINFORM的开发人员在DataGridView的开发当中,都会出现“索引-1没有值”这个烦人的问题,其实较早之前,我已经大概知道问题的所在,也找到了解决方法,不过一直没有时间去深入研究一下,今 ...

  9. 使用sequelize对数据库进行增删改查

    由于本人对于命令比较执着,所以基本都是在命令下操作的,喜欢使用命令的可以使用Cmder,需要安装.配置的可以参考这篇文章: https://www.cnblogs.com/ziyoublog/p/10 ...

  10. React Native 开发豆瓣评分(三)集成 Redux

    什么是 redux redux 是一个用于管理 js 应用状态(state)的容器.比如组件 A 发生了变化,组件 B 要同时做出响应.常见的应用场景就是用户的登录退出操作:未登录状态,个人中心显示登 ...