题意:
给一个序列a[1],a[2],a[3]...a[n],求其中连续的子序列A[L],A[L+1],...,A[R],使其权值 W(L,R)=(R-L+1)×gcd(A[L],...,A[R])最大。
输入格式
输入一行包含一个正整数n
接下来一行,包含N个正整数,
表示序列A_i
输出格式
输出文件包含一行一个正整数,表示权值最大的子序列的权值。
输入 #1
5
30 60 20 20 20
输出 #1
80
说明/提示
1≤Ai≤10^12,1≤N≤100000
可知一个数的质因数个数最多为logai次
那么对ai与其他a取gcd,最多有logai个值
那么记录下j的最左端点,使任意gcd(a_(j+k),...a_i)相同
算上求gcd,复杂度为O(nlog^2n)
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
int n,cnt[];
lol Gcd[][];
int lst[][];
lol a[];
lol ans;
lol gcd(lol a,lol b)
{
if (!b) return a;
return gcd(b,a%b);
}
lol max(lol a,lol b)
{
if (a>b) return a;
return b;
}
int main()
{int i,j;
cin>>n;
for (i=;i<=n;i++)
scanf("%lld",&a[i]);
for (i=;i<=n;i++)
{
cnt[i]=;
Gcd[i][cnt[i]]=a[i];
lst[i][cnt[i]]=i;
ans=max(ans,a[i]);
for (j=;j<=cnt[i-];j++)
{
cnt[i]++;
Gcd[i][cnt[i]]=gcd(Gcd[i][cnt[i]-],Gcd[i-][j]);
lst[i][cnt[i]]=lst[i-][j];
ans=max(ans,(lol)(i-lst[i][cnt[i]]+)*Gcd[i][cnt[i]]);
if (Gcd[i][cnt[i]]==Gcd[i][cnt[i]-])
{
cnt[i]--;
lst[i][cnt[i]]=lst[i-][j];
}
}
}
cout<<ans;
}
 
 

[JSOI2015]最大公约数的更多相关文章

  1. bzoj 4488 [Jsoi2015]最大公约数 结论+暴力

    [Jsoi2015]最大公约数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 302  Solved: 169[Submit][Status][Dis ...

  2. BZOJ4488: [Jsoi2015]最大公约数

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...

  3. BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...

  4. [BZOJ 4488][Jsoi2015]最大公约数

    传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...

  5. BZOJ4488 JSOI2015最大公约数

    显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...

  6. 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)

    洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...

  7. 2018年长沙理工大学第十三届程序设计竞赛 I 连续区间的最大公约数

    连续区间的最大公约数 思路:参照BZOJ 4488: [Jsoi2015]最大公约数脑补出的一个\(map\)套\(vector\)的写法,写起来比线段树短,运行时间比线段树快. 代码: #pragm ...

  8. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. Linux下创建Oracle19C的数据库实例

    接上一篇博客,安装 Oracle19chttps://www.cnblogs.com/xuzhaoyang/p/11264557.html 切换到root用户下,切换目录到db_1,执行,遇到选择路径 ...

  2. Apache Kafka主题 - 架构和分区

    1.卡夫卡话题 在这篇Kafka文章中,我们将学习Kafka主题与Kafka Architecture的整体概念.Kafka中的体系结构包括复制,故障转移以及并行处理.此外,我们还将看到创建Kafka ...

  3. 函数的练习1——python编程从入门到实践

    8-1 消息: 编写一个名为display_message()的函数,它打印一个句子指出你在本章学的是什么.调用这个函数,确认显示的消息正确无误. def display_message(): pri ...

  4. 【LEETCODE】58、数组分类,适中级别,题目:238、78、287

    package y2019.Algorithm.array.medium; import java.util.Arrays; /** * @ProjectName: cutter-point * @P ...

  5. Python生成流水线《无限拍卖》文字!

    话说,原文也是这样流水线生产的吧··· 代码 import random one_char_word=["烈","焰","冰"," ...

  6. [LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)

    https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #defi ...

  7. .net core使用ocelot---第四篇 限流熔断

    简介 .net core使用ocelot---第一篇 简单使用 .net core使用ocelot---第二篇 身份验证 .net core使用ocelot---第三篇 日志记录 前几篇文章我们陆续介 ...

  8. aspnetcore 容器化部属到阿里云全过程记录

    第一次写博客,作为一个全栈er,记录一下从阿里云到产品运维上线的全过程 一.阿里云上的设置 购买阿里云ECS后: 进控制台查看实例公网IP 在控制台.网络与安全->安全组,配置规则 点击进去可以 ...

  9. Office 365 的安装与激活

    (1)Office 365的安装,本处使用的是Office Tool Plus. (2)等待安装完成 (3)重头戏激活 , 使用命令行方式 (不推荐) 以下内容,新建文本文件,然后保存为.bat,再以 ...

  10. 分布式系统session一致性解决方案

    在单机系统中,不存在Session共享问题,但是在分布式系统中,我们必须实现session共享机制,使得多台应用服务器之间会话统一,如果不进行Session共享会出现数据不一致,比如:会导致请求落到不 ...