深度学习Keras框架笔记之AutoEncoder类
深度学习Keras框架笔记之AutoEncoder类使用笔记
keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None)
这是一个用于构建很常见的自动编码模型。如果参数output_reconstruction=True,那么dim(input)=dim(output);否则dim(output)=dim(hidden)。
inputshape: 取决于encoder的定义
outputshape:取决于decoder的定义
参数:
- encoder:编码器,是一个layer类型或layer容器类型。
- decoder:解码器,是一个layer类型或layer容器类型。
- output_reconstruction:boolean。值为False时,调用predict()函数时,输出是经过最深隐层的激活函数。Otherwise, the output of thefinal decoder layer is presented. Be sure your validation data conforms to thislogic if you decide to use any.(这一块还不太了解,待以后了解了再补充)
- weights:用于初始化权值的numpy arrays组成的list。这个List至少有1个元素,其shape为(input_dim, output_dim)。
举例:
from keras.layers import containers # input shape: (nb_samples, 32)
encoder =containers.Sequential([Dense(16, input_dim=32), Dense(8)])
decoder =containers.Sequential([Dense(16, input_dim=8), Dense(32)]) autoencoder =Sequential()
autoencoder.add(AutoEncoder(encoder=encoder, decoder=decoder,output_reconstruction=False))
顺便再打个小广告,欢迎访问自己的网站:圆柱模板
深度学习Keras框架笔记之AutoEncoder类的更多相关文章
- 深度学习Keras框架笔记之TimeDistributedDense类
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init= ...
- 深度学习Keras框架笔记之Dense类(标准的一维全连接层)
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...
- 深度学习Keras框架笔记之Activation类使用
使用 keras.layers.core.Activation(activation) Apply an activation function tothe input.(貌似是把激活函数应用到输入数 ...
- 深度学习Keras框架笔记之激活函数详解
激活函数也是神经网络中一个很重的部分.每一层的网络输出都要经过激活函数.比较常用的有linear,sigmoid,tanh,softmax等.Keras内置提供了很全的激活函数,包括像LeakyReL ...
- 深度学习Keras框架笔记之核心层基类
Keras的Layers,就是构成网络的每一层.Keras实现了很多层,包括核心层.卷基层.RNN网络层等诸多常用的网络结构.下面开介绍核心层中包含了哪些内容.因为这个核心层我现在还没有全部用到,所以 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- 人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NL ...
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...
- 人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍
人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍 ================================ ...
随机推荐
- vue获取不到后端返回的响应头
Response.ContentType = EPPlusHelpler.ExcelContentType; Response.Headers.Add("FileName", fi ...
- 【记录】【solr】whose UTF8 encoding is longer than the max length 32766
java添加数据到solr报错 whose UTF8 encoding is longer than the max length 32766 原因是长度太长,string类型改成text_gener ...
- 【javascript】日期转字符串
function dateFormat(fmt, date) { var ret; var tf = function(str, len){ if(str.length < len) { for ...
- 执行sudo supervisorctl reload报错ImportError: No module named supervisor.supervisord
由于yum install supervisor 会默认使用python2.6环境,首先要安装好python2.6的环境,然后修改以下文件首行为2.6即可 [root@VM_0_15_centos ~ ...
- Python实现字典树
字典树,又称单词查找树,Trie 树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:利用字符串 ...
- day55——django引入、小型django(socket包装的服务器)
day55 吴超老师Django总网页:https://www.cnblogs.com/clschao/articles/10526431.html 请求(网址访问,提交数据等等) request 响 ...
- SQL Server日志处理及安全访问
1.点SQL SERVER错误日志,右键,配置,限定错误日志的数目,比如6个 限制日志增长数量 2.然后运行命令: EXEC sp_cycle_errorlog ; 这个命令的作用是将当前日志归档,然 ...
- emmet 配置文件
snippets.json(添加自己的或更新现有的片段) preferences.json(更改某些Emmet过滤器和操作的行为) SyntaxProfiles.json(定义生成的HTML / XM ...
- Window中C++进行精确计时的方法
嗯,程序员一个永恒的追求就是性能吧? 为了衡量性能,自然需要计时. 奈何无论C标准库还是C++标准库,因为通用性的考虑,其time API精度都不高.基本都是毫秒级的. 所以如果要真正精确地衡量程序的 ...
- C# vb .net图像合成-多图片叠加合成
在.net中,如何简单快捷地实现图像合成呢,比如合成文字,合成艺术字,多张图片叠加合成等等?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码 ...