CF1245F: Daniel and Spring Cleaning

题意描述:

  • 给定区间\([L,R]\),其中 \((0\leq L,R\leq 10^9)\),问在区间内有多少数对\((x,y)\)满足\(x+y==x\land y\)。

输入描述:

  • 第一行输入一个\(T\)表示测试样例数目。
  • 接下来每一个测试样例输入两个整数\(L,R\)表示区间。

输出描述:

  • 输出一个整数表示答案。

思路:

  • 首先对条件进行变形。
  • \(x+y==x\land y\),有\(x\&y==0\),证明略。
  • 那么题目要求的就转化为区间内\(x\&y==0\)的数对数量。
  • 定义\(f(l,r)\)为\([l,r)\)区间内满足条件的数对的数量。那么显然有\(f(0,r)=2r+f(1,r)\),因为\(0\)可以和任意数字组合。
  • 性质:\(f(2l,2r)=3f(l,r)\)。
    • 证明:
    • 考虑满足条件的数对\((x,y)\)的二进制表示。对于最右边的位置,有三种选择方式\((0,1),(1,0),(0,0)\)。
    • 选择其他位的方法是\(f(l,r)\),因此\(f(2l,2r)=3f(l,r)\)。
  • 这样我们可以每次对范围除以\(2\),但这样就要保证我们的\(l,r\)是偶数,当他不是偶数的时候可以进行如下操作。
  • 定义\(g(x,n)\)为满足以下条件的\(y\)的个数。
    • \(0\leq y<n\)
    • \(x\&y==0\)
  • 那么当\(l\)是奇数的时候:
    • \(f(l+1,r)=f(l,r)-2(g(l,r)-g(l,l))\)。

      • 解释:由最上方定义的那个性质可以知道:\(f(l,r)=num+f(l+1,r)\),其中\(num\)是\(l\)与\([l,r]\)区间内的数满足条件的数对\((l,x)\)数量\((x\in[l,r])\)。
      • 那么由\(g(i,j)\)的定义可知,\(g(l,r)\)表示\(l\)在\([0,r]\)范围内满足条件的\(y\)的个数,\(g(l,l)\)表示在\([0,l)\)范围内满足条件的\(y\)的个数,那么两个相减就是\([l,r)\)区间内满足条件数对的数量。当然要\(*2\),因为\((x,y)\)与\((y,x)\)为两种情况。
    • 变形为\(f(l,r)=f(l+1,r)+2(g(l,r)-g(l,l))\)。
  • 同样的当\(r\)为奇数的时候有:
    • \(f(l,r-1)=f(l,r)-2(g(r-1,r)-g(r-1,l))\)。

      • 解释:他的差值也就是\(r-1\)在\([l,r)\)内有多少满足条件的数对。
    • \(f(l,r)=f(l,r-1)+2(g(r-1,r)-g(r-1,l))\)。
  • 于是我们只需要考虑如何快速的计算\(g(i,j)\)。
  • 定义\(h(x,n)\)为满足下列条件的\(y\)的数量。
    • \(n-lowbit(n)\leq y<n\)
    • \(x\& y==0\)
  • 那么有\(g(x,n)=h(x,n)+g(x,n-lowbit(n))(n>0)\)。
  • 对于\(h(x,n)\),我们可以在\(logn\)的时间内计算出来。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll g(int a, int b)
{
ll res = 0;
ll num = 0; for(int i = 1; i <= b; i <<= 1)
{
if(b & i)
{
b ^= i;
if(!(a&b)) res += 1<<num;
}
if(!(a&i)) num++;
} return res;
} ll calc(int a, int b)
{
if(a == b) return 0;
if(a == 0) return 2*b - 1 + calc(1, b);
ll res = 0;
if(a & 1)
{
//f(l,r)=f(l+1,r)+2(g(l,r)-g(l,l))
res += 2 * (g(a, b) - g(a,a));
a++;
}
if(b & 1)
{
//f(l,r)=f(l,r-1)+2(g(r-1,r)-g(r-1,l))
res += 2 * (g(b-1, b) - g(b-1, a));
b--;
}
return res + 3 * calc(a/2, b/2);
} int main()
{
int T; cin >> T;
int a, b;
while(T--)
{
cin >> a >> b;
cout << calc(a, b+1) << endl;
}
return 0;
}

CF1245F: Daniel and Spring Cleaning的更多相关文章

  1. Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp

    F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...

  2. CodeForces - 1245F Daniel and Spring Cleaning (数位DP)

    While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it ...

  3. [cf 1245 F] Daniel and Spring Cleaning

    题意: 求区间$[l,r]$内有多少有序数对$(a,b)$满足$a+b=a\bigoplus b$. $l,r\leq 10^9$. 题解: 有用的就一句话: 求区间内一元组可以一维容斥,同理求二元组 ...

  4. Codefroces 1245 F. Daniel and Spring Cleaning

    传送门 考虑简单的容斥 设 $F(n,m)$ 表示 $a \in [1,n] , b \in [1,m]$ 的满足 $a+b=a \text{ xor } b$ 的数对的数量 那么答案即为 $F(r, ...

  5. codeforces 597div2 F. Daniel and Spring Cleaning(数位dp+二维容斥)

    题目链接:https://codeforces.com/contest/1245/problem/F 题意:给定一个区间(L,R),a.b两个数都是属于区间内的数,求满足 a + b = a ^ b ...

  6. 并不对劲的CF1245E&F:Cleaning Ladders

    CF1245 E. Hyakugoku and Ladders 题目大意 有一个10 \(\times\) 10的网格,你要按这样的路径行走: 网格中有一些单向传送门,每个传送门连接的两个格子在同一列 ...

  7. some problem

    CF1257F Make Them Similar $solution:$ 折半搜索后考虑如何维护两个数组的和,可以将 $A$ 中每个数减 $A_1$ ,$B$ 中每个数被减 $B_1$ ,$map$ ...

  8. Codeforces Round #597 (Div. 2)

    A - Good ol' Numbers Coloring 题意:有无穷个格子,给定 \(a,b\) ,按以下规则染色: \(0\) 号格子白色:当 \(i\) 为正整数, \(i\) 号格子当 \( ...

  9. 【oneday_onepage】——Ten Changes To Make A Difference In Your Life

    When you want to change something in your life, it can feel overwhelming. Whether it’s losing 50lbs ...

随机推荐

  1. AAct 一款 KMS 激活工具

    AAct是一款由俄罗斯网友Ratiborus制作的非常小巧实用的KMS激活工具,能自动设置密钥管理服务激活Windows.Office VL版本.支持手动安装及删除激活产品密钥.手动创建及删除续期计划 ...

  2. java数字前面补充0公共方法

  3. 【题解】Luogu P5301 [GXOI/GZOI2019]宝牌一大堆

    原题传送门 首先先要学会麻将,然后会发现就是一个暴力dp,分三种情况考虑: 1.非七对子国士无双,设\(dp_{i,j,k,a,b}\)表示看到了第\(i\)种牌,一共有\(j\)个\(i-1\)开头 ...

  4. 命令源码文件——Golang

    源码文件又分为三种,即:命令源码文件.库源码文件和测试源码文件,它们都有着不同的用途和编写规则. 命令源码文件:1.独立程序的入口2.属于main包,包含无参数和无结果的main函数3.main函数执 ...

  5. 使用Dbvisualizer 连接 Elasticsearch

    Dbvisualizer 安装 从网上下载该软件,并破解激活 下载地址:http://www.ddooo.com/softdown/142713.htm 1.下载解压,得到dbvisualizer p ...

  6. java属性和普通方法

    属性和普通方法 一.定义类 上一节讲了很多深奥的理论,那么这节我们就得实践一下,先简单描述一下我们的实体世界:有一个学生小明,那么这个学生就是一个对象,这个对象有哪些属性和方法呢,我们可以先简单抽象一 ...

  7. CorelDRAW 学习笔记(一)

    基本图形 等比例图形:按住 Ctrl 拖拽 以中心为起点等比例缩放:按住 Shift 拖拽 快捷键: 矩形:F6 圆形:F7 多边形:Y 双击矩形工具,可以直接创建一个页面大小的矩形对象: 对象对齐 ...

  8. Ablation Study

    We often come across 'ablation study' in machine learning papers, for example, in this paper with th ...

  9. spark存储管理之磁盘存储--DiskStore

    DiskStore 接着上一篇,本篇,我们分析一下实现磁盘存储的功能类DiskStore,这个类相对简单.在正式展开之前,我觉得有必要大概分析一下BlockManager的背景,或者说它的运行环境,运 ...

  10. Serverless

    一.介绍 是指依赖于第三方应用程序或服务来管理服务器端逻辑的应用程序. 此类应用程序是基于云的数据库(如Google Firebase)或身份验证服务. 无服务器也意味着开发为事件触发的代码,并且在无 ...