传送门


又是喜闻乐见的\(k\)次幂求和题目

那么\(S(x) = \sum\limits_{i=1}^n dist(i,x)^k = \sum\limits_{i=1}^n \sum\limits_{j=1}^k \binom{dist(i,x)}{j} \left\{ \begin{array}{cccc} k \\ j \end{array}\right\} j! = \sum\limits_{j=1}^k \left\{ \begin{array}{cccc} k \\ j \end{array}\right\} j! \sum\limits_{i=1}^n \binom{dist(i,x)}{j}\)。

因为组合数有优秀的性质:\(\binom{i+1}{j}=\binom{i}{j} + \binom{i}{j - 1}\),可以用这一个式子做一个DP。

设\(x\)和\(x\)的子树集合为\(S_x\),\(dp_{i,j}=\sum\limits_{x \in S_i}\binom{dist(i,x)}{j}\),转移的时候考虑\(i\)的孩子\(x\),\(dp_x\)中的所有\(dist\)都会加上\(1\),也就是说\(dp_{i,j} += \sum\limits_{y \in S_x} \binom{dist(x,y)+1}{j} = \sum\limits_{y \in S_x} (\binom{dist(x,y)}{j}+\binom{dist(x,y)}{j-1}) = dp_{x,j}+dp_{x,j-1}\),初始每一个节点\(i\)的\(dp_{i,0}=1\),其余为\(0\)。

接下来设\(up_{i,j} = \sum\limits_{x \not\in S_i}\binom{dist(i,x)}{j}\),转移从一个点\(i\)转移到它的孩子\(x\),将\(dp_x\)对\(dp_i\)的贡献消除之后得到\(dp'_i\),那么不难得到\(up_{x,j} = up_{i,j}+up_{i,j-1}+dp'_{i,j}+dp'_{i,j-1}\)。

最后\(\sum\limits_{i=1}^n \binom{dist(i,x)}{j} = dp_{x,j} + up_{x,j}\)。

#include<bits/stdc++.h>
//this code is written by Itst
using namespace std; int read(){
int a = 0; char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
} const int _ = 50003 , MOD = 10007;
struct Edge{
int end , upEd;
}Ed[_ << 1];
int dp[_][157] , up[_][157] , tmp[157] , S[157][157] , ans[_];
int N , K , head[_] , cntEd; void addEd(int a , int b){
Ed[++cntEd] = (Edge){b , head[a]};
head[a] = cntEd;
} void dfs1(int x , int p){//dp
dp[x][0] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
dfs1(Ed[i].end , x);
for(int j = K ; j ; --j)
dp[x][j] = (dp[x][j] + dp[Ed[i].end][j] + dp[Ed[i].end][j - 1]) % MOD;
dp[x][0] = (dp[x][0] + dp[Ed[i].end][0]) % MOD;
}
} void dfs2(int x , int p){//up
for(int i = 0 ; i <= K ; ++i)
tmp[i] = (up[x][i] + dp[x][i]) % MOD;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
up[Ed[i].end][0] = (tmp[0] + MOD - dp[Ed[i].end][0]) % MOD;
for(int j = 1 ; j <= K ; ++j)
up[Ed[i].end][j] = (tmp[j] + 2 * MOD - (dp[Ed[i].end][j] + dp[Ed[i].end][j - 1])) % MOD;
for(int j = K ; j ; --j)
up[Ed[i].end][j] = (up[Ed[i].end][j] + up[Ed[i].end][j - 1]) % MOD;
}
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p)
dfs2(Ed[i].end , x);
} int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read(); K = read();
for(int i = 1 ; i < N ; ++i){
int a = read() , b = read();
addEd(a , b); addEd(b , a);
}
S[1][1] = 1;
for(int i = 2 ; i <= K ; ++i)
for(int j = 1 ; j <= i ; ++j)
S[i][j] = (S[i - 1][j - 1] + S[i - 1][j] * j) % MOD;
dfs1(1 , 0); dfs2(1 , 0);
int fac = 1;
for(int j = 1 ; j <= K ; ++j){
fac = 1ll * fac * j % MOD;
for(int i = 1 ; i <= N ; ++i)
ans[i] = (ans[i] + 1ll * (dp[i][j] + up[i][j]) * fac * S[K][j]) % MOD;
}
for(int i = 1 ; i <= N ; ++i)
printf("%d\n" , ans[i]);
return 0;
}

Luogu4827 Crash的文明世界 组合、树形DP的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)

    题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...

  3. 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)

    传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...

  4. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  5. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  6. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  7. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  8. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  9. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

随机推荐

  1. vue+Element 后台管理骨架

    1.使用的是vue-cli 3.0起的 2.文件目录结构 3.整体的骨架是根据element 文档里头的Container容器布局来的(复制粘贴,喜欢什么色儿就改) aside这个 部分需要注意的是这 ...

  2. 安装关系型数据库MySQL 安装大数据处理框架Hadoop

    作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 1.Hadoop的介绍 Hadoop最早起源于Nutch.Nut ...

  3. Python script to package the information of tracking benchmarks like LaSOT and GOT-10k into json files for Siamese network based trackers

    ############################################################################################ #### Fo ...

  4. 一个简单的java爬虫

    直接上代码: package com.jeecg.util; import java.io.BufferedReader; import java.io.IOException; import jav ...

  5. Spark资源调度及任务调度

    1.  资源分配 通过SparkSubmit进行提交应用后,首先会创建Client将应用程序(字节码文件.class)包装成Driver,并将其注册到Master.Master收到Client的注册请 ...

  6. 2-1 CLI 工程结构

    ng new 项目名称:去创建一个angular的项目 ng new pinduoduo 是否需要添加路由,选择否 选择传统的css rm -fr pinduoduo:删除刚才创建的项目 ng new ...

  7. python提取mysql中指定列参数,并循环打印

    试验环境: Python 3.7.0 Mysql 5.0 实验目的: 使用python将数据库中指定的列中的数值取出来,并循环遍历,用以当成参数传递给需要它的方法. 本次实验取的是para列的数据 实 ...

  8. 网页视频直播、微信视频直播技术解决方案:EasyNVR与EasyDSS流媒体服务器组合之区分不同场景下的直播接入需求

    背景分析 熟悉EasyNVR产品的朋友们都知道,EasyNVR不仅可以独成体系,而且还可以跟其他系列产品相配合,形成各种不同类型的解决方案,满足各种不同应用场景的实际需求.针对很多设备现场没有固定公网 ...

  9. 【Flume学习之二】Flume 使用场景

    环境 apache-flume-1.6.0 一.多agent连接 1.node101配置 option2 # Name the components on this agent a1.sources ...

  10. snapde的批量数据运算公式

    一.snapde基本介绍 Snapde,一个专门为编辑超大型数据量CSV文件而设计的单机版电子表格软件:它能打开最大3G大小的CSV文件进行编辑:它运行的速度非常快,反应非常灵敏. 二.snapde批 ...