[洛谷P5431]【模板】乘法逆元2
题目大意:给定$n(n\leqslant5\times10^6)$个正整数$a_i$,和$k$。求:
$$
\sum_{i=1}^n\dfrac{k^i}{a_i}\pmod p
$$
题解:
$$
令P=\prod_{i=1}^na_i\pmod p\\
ans=\dfrac{\sum_{i=1}^nk^i\dfrac P{a_i}}{P}\pmod p\\
\dfrac P{a_i}可以前缀积后缀积解决
$$
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
#include <algorithm> namespace std {
struct istream {
#define M (1 << 26 | 3)
char buf[M], *ch = buf - 1;
inline istream() { fread(buf, 1, M, stdin); }
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 10 | 3)
char buf[M], *ch = buf - 1;
inline ostream& operator << (int x) {
if (!x) {*++ch = '0'; return *this;}
static int S[20], *top; top = S;
while (x) {*++top = x % 10 ^ 48; x /= 10;}
for (; top != S; --top) *++ch = *top;
return *this;
}
inline ostream& operator << (const char x) {*++ch = x; return *this;}
inline ~ostream() { fwrite(buf, 1, ch - buf + 1, stdout); }
#undef M
} cout;
} #define maxn 5000010
#define mul(a, b) (static_cast<long long> (a) * (b) % mod)
int n, mod, k, pr = 1;
int a[maxn], sl[maxn], sr[maxn]; namespace Math {
int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = mul(base, base)) if (p & 1) res = mul(res, base);
return res;
}
int inv(int x) { return pw(x, mod - 2); }
}
inline void reduce(int &x) { x += x >> 31 & mod; } int main() {
std::cin >> n >> mod >> k;
for (int i = 1; i <= n; ++i) {
std::cin >> a[i];
sl[i] = pr = mul(pr, a[i]);
}
pr = Math::inv(pr);
sl[0] = sr[n + 1] = 1;
for (int i = n; i; --i)
sr[i] = mul(sr[i + 1], a[i]);
int ans = 0, K = 1;
for (int i = 1; i <= n; ++i) {
K = mul(K, k);
reduce(ans += mul(K, mul(sl[i - 1], sr[i + 1])) - mod);
}
ans = mul(ans, pr);
std::cout << ans << '\n';
return 0;
}
[洛谷P5431]【模板】乘法逆元2的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【洛谷P3811】[模板]乘法逆元
乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
随机推荐
- Pyton项目打包成exe文件
Python项目打包成exe文件 1 系统环境 windows版本: Win7 64位 python环境:Anaconda python版本:3.6 64位 pyinstaller版本:3.5 1 安 ...
- SpaceClaim通过脚本创建新窗口
下载安装SharpDevelop,下载地址:http://www.icsharpcode.net/OpenSource/SD/Download/Default.aspx#SharpDevelop3x ...
- [C++] new和delete运算符使用方法
new 和 delete 是C++语言中的两个运算符,配套使用. new:用于分配内存,与C语言中的 malloc 相同,分配在堆内存 delete:用于释放内存,与C语言中的 free 相同,释放堆 ...
- mysql 常用字符串操作
SET @L=16, @i=3;SELECT *,CONCAT( LEFT(tag2,@i-1) ,'W', RIGHT(tag2,@L-@i)) from tb_main LIMIT 1,10;
- 转:【微信公众号】微信snsapi_base静默授权与snsapi_userinfo网页授权的实现(不建议使用静默,直接用主动比较方便)
版权声明:本文为CSDN博主「小璐謌」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明. 原文链接:https://blog.csdn.net/qq_37462176/ ...
- MySQL count
https://www.jianshu.com/p/1b0a1f641e80] 不同引擎count(*)实现方式不同 MyISAM引擎把一个表的总行数记录在了磁盘上,执行count(*)会直接返回这个 ...
- 软件定义网络基础---REST API的设计规范
一:REST API的设计 REST API是基于HTTP协议进行设计的,由HTTP动词+URI组成 (一)HTTP动词 (二)资源的原型 文档(Document): 文档是资源的单一表现形式: 集合 ...
- iOS开发应该知道的7个编程概念
对流行工具(如Xcode)和编程概念(如视图控制器)的高级讨论,这些对iOS开发本身很有用. 1. Xcode Xcode是iOS应用开发社区所见过的最通用的IDE.由于集成开发环境来自Apple,它 ...
- python 中requests的返回数可直接使用json
对Python的request不是很了解,在使用时才发现,可以把request的请求结果,直接使用.json()['字段名']方法进行一个取值,案例如下 def test_tiantian(self) ...
- Linux下 PostgrelSQL 基本操作
一.在默认配置条件下,本机访问PostgreSQL 切换到Linux用户postgres,然后执行psql: $ su - postgres Last login: Wed Mar 1 13:16:4 ...