--喜欢记得关注我哟【shoshana】--

前记

JUC中的Lock中最核心的类AQS,其中AQS使用到了CLH队列的变种,故来研究一下CLH队列的原理及JAVA实现

一. CLH背景知识

SMP(Symmetric Multi-Processor)。即对称多处理器结构,指server中多个CPU对称工作,每一个CPU訪问内存地址所需时间同样。其主要特征是共享,包括对CPU,内存,I/O等进行共享。SMP的长处是可以保证内存一致性。缺点是这些共享的资源非常可能成为性能瓶颈。随着CPU数量的添加,每一个CPU都要訪问同样的内存资源,可能导致内存訪问冲突,可能会导致CPU资源的浪费。经常使用的PC机就属于这样的。
NUMA(Non-Uniform Memory Access)非一致存储訪问,将CPU分为CPU模块,每一个CPU模块由多个CPU组成,而且具有独立的本地内存、I/O槽口等,模块之间能够通过互联模块相互訪问,訪问本地内存的速度将远远高于訪问远地内存(系统内其他节点的内存)的速度,这也是非一致存储訪问NUMA的由来。NUMA长处是能够较好地解决原来SMP系统的扩展问题,缺点是因为訪问远地内存的延时远远超过本地内存,因此当CPU数量添加时。系统性能无法线性添加。

CLH 锁的名字也与他们的发明人的名字相关:Craig,Landin and Hagersten。

CLH Lock摘要

CLH lock is Craig, Landin, and Hagersten (CLH) locks, CLH lock is a spin lock, can ensure no hunger, provide fairness first come first service.
The CLH lock is a scalable, high performance, fairness and spin lock based on the list, the application thread spin only on a local variable, it constantly polling the precursor state, if it is found that the pre release lock end spin.

CLH锁是自旋锁的一种,对它的研究是因为AQS源代码中使用了CLH锁的一个变种,为了更好的理解AQS中使用锁的思想,所以决定先好好理解CLH锁

二. CLH原理

CLH也是一种基于单向链表(隐式创建)的高性能、公平的自旋锁,申请加锁的线程只需要在其前驱节点的本地变量上自旋,从而极大地减少了不必要的处理器缓存同步的次数,降低了总线和内存的开销。

三. Java代码实现

类图


public interface Lock {
void lock(); void unlock();
} public class QNode {
volatile boolean locked;
} import java.util.concurrent.atomic.AtomicReference; public class CLHLock implements Lock {
// 尾巴,是所有线程共有的一个。所有线程进来后,把自己设置为tail
private final AtomicReference<QNode> tail;
// 前驱节点,每个线程独有一个。
private final ThreadLocal<QNode> myPred;
// 当前节点,表示自己,每个线程独有一个。
private final ThreadLocal<QNode> myNode; public CLHLock() {
this.tail = new AtomicReference<QNode>(new QNode());
this.myNode = new ThreadLocal<QNode>() {
protected QNode initialValue() {
return new QNode();
}
};
this.myPred = new ThreadLocal<QNode>();
} @Override
public void lock() {
// 获取当前线程的代表节点
QNode node = myNode.get();
// 将自己的状态设置为true表示获取锁。
node.locked = true;
// 将自己放在队列的尾巴,并且返回以前的值。第一次进将获取构造函数中的那个new QNode
QNode pred = tail.getAndSet(node);
// 把旧的节点放入前驱节点。
myPred.set(pred);
// 判断前驱节点的状态,然后走掉。
while (pred.locked) {
}
} @Override
public void unlock() {
// unlock. 获取自己的node。把自己的locked设置为false。
QNode node = myNode.get();
node.locked = false;
myNode.set(myPred.get());
}
}

简单的看一下CLH的算法定义

the list, the application thread spin only on a local variable, it constantly polling the precursor state, if it is found that the pre release lock end spin.

基于list,线程仅在一个局部变量上自旋,它不断轮询前一个节点状态,如果发现前一个节点释放锁结束.

所以在java中使用了ThreadLocal作为具体实现,AtomicReference为了消除多个线程并发对tail引用Node的影响,核心方法lock()中分为3个步骤去实现

  1. 初始状态 tail指向一个node(head)节点

    private final AtomicReference<Node> tail = new AtomicReference<Node>(new Node());
  2. thread加入等待队列: tail指向新的Node,同时Prev指向tail之前指向的节点,在java代码中使用了getAndSet即CAS操作使用

    Node pred = this.tail.getAndSet(node);
    this.prev.set(pred);
  3. 寻找当前线程对应的node的前驱node然后开始自旋前驱node的status判断是否可以获取lock

    while (pred.locked);

同理unlock()方法,获取当前线程的node,设置lock status,将当前node指向前驱node(这样操作tail指向的就是前驱node等同于出队操作).至此CLH Lock的过程就结束了

测试CLHLock

public class CLHLockDemo2 {

    public static void main(String[] args) {
final Kfc kfc = new Kfc();
for (int i = 0; i < 10; i++) {
new Thread("eat" + i) {
public void run() {
kfc.eat();
}
}.start();
} }
} class Kfc {
private final Lock lock = new CLHLock();
private int i = 0; public void eat() {
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + ": " + --i);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} public void cook() {
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + ": " + ++i);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}

 运行结果

eat1: -1
eat0: -2
eat3: -3
eat4: -4
eat7: -5
eat2: -6
eat5: -7
eat6: -8
eat8: -9
eat9: -10

四. CLH优缺点

CLH队列锁的优点是空间复杂度低(如果有n个线程,L个锁,每个线程每次只获取一个锁,那么需要的存储空间是O(L+n),n个线程有n个myNode,L个锁有L个tail),CLH的一种变体被应用在了JAVA并发框架中。唯一的缺点是在NUMA系统结构下性能很差,在这种系统结构下,每个线程有自己的内存,如果前趋结点的内存位置比较远,自旋判断前趋结点的locked域,性能将大打折扣,但是在SMP系统结构下该法还是非常有效的一种解决NUMA系统结构的思路是MCS队列锁

五. 了解与CLH对应的MCS自旋锁

MCS 自旋锁

MCS 的名称来自其发明人的名字:John Mellor-Crummey和Michael Scott。
MCS 的实现是基于链表的,每个申请锁的线程都是链表上的一个节点,这些线程会一直轮询自己的本地变量,来知道它自己是否获得了锁。已经获得了锁的线程在释放锁的时候,负责通知其它线程,这样 CPU 之间缓存的同步操作就减少了很多,仅在线程通知另外一个线程的时候发生,降低了系统总线和内存的开销。实现如下所示:

import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
public class MCSLock {
public static class MCSNode {
volatile MCSNode next;
volatile boolean isWaiting = true; // 默认是在等待锁
}
volatile MCSNode queue;// 指向最后一个申请锁的MCSNode
private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER = AtomicReferenceFieldUpdater
.newUpdater(MCSLock.class, MCSNode.class, "queue"); public void lock(MCSNode currentThread) {
MCSNode predecessor = UPDATER.getAndSet(this, currentThread);// step 1
if (predecessor != null) {
predecessor.next = currentThread;// step 2
while (currentThread.isWaiting) {// step 3
}
} else { // 只有一个线程在使用锁,没有前驱来通知它,所以得自己标记自己已获得锁
currentThread.isWaiting = false;
}
} public void unlock(MCSNode currentThread) {
if (currentThread.isWaiting) {// 锁拥有者进行释放锁才有意义
return;
} if (currentThread.next == null) {// 检查是否有人排在自己后面
if (UPDATER.compareAndSet(this, currentThread, null)) {// step 4
// compareAndSet返回true表示确实没有人排在自己后面
return;
} else {
// 突然有人排在自己后面了,可能还不知道是谁,下面是等待后续者
// 这里之所以要忙等是因为:step 1执行完后,step 2可能还没执行完
while (currentThread.next == null) { // step 5
}
}
}
currentThread.next.isWaiting = false;
currentThread.next = null;// for GC
}
}

MCS 的能够保证较高的效率,降低不必要的性能消耗,并且它是公平的自旋锁。

CLH 锁与 MCS 锁的原理大致相同,都是各个线程轮询各自关注的变量,来避免多个线程对同一个变量的轮询,从而从 CPU 缓存一致性的角度上减少了系统的消耗。
CLH 锁与 MCS 锁最大的不同是,MCS 轮询的是当前队列节点的变量,而 CLH 轮询的是当前节点的前驱节点的变量,来判断前一个线程是否释放了锁。
 

小结

CLH Lock是一种比较简单的自旋锁算法之一,因为锁的CAS操作涉及到了硬件的锁定(锁总线或者是锁内存)所以性能和CPU架构也密不可分,该兴趣的同学可以继续深入研究包括MCS锁等。CLH Lock是独占式锁的一种,并且是不可重入的锁,这篇文章是对AQS锁源代码分析的预热篇

参考内容:

https://segmentfault.com/a/1190000007094429

https://blog.csdn.net/faicm/article/details/80501465

https://blog.csdn.net/aesop_wubo/article/details/7533186

https://www.jianshu.com/p/0f6d3530d46b

https://blog.csdn.net/jjavaboy/article/details/78603477

CLH lock 原理及JAVA实现的更多相关文章

  1. CLH lock queue的原理解释及Java实现

    目录 背景 原理解释 Java代码实现 定义QNode 定义Lock接口 定义CLHLock 使用场景 运行代码 代码输出 代码解释 CLHLock的加锁.释放锁过程 第一个使用CLHLock的线程自 ...

  2. Java并发包源码学习之AQS框架(二)CLH lock queue和自旋锁

    上一篇文章提到AQS是基于CLH lock queue,那么什么是CLH lock queue,说复杂很复杂说简单也简单, 所谓大道至简: CLH lock queue其实就是一个FIFO的队列,队列 ...

  3. Ticket Lock, CLH Lock, MCS Lock

    如果不用OS提供的mutex,我们该如何实现互斥锁?(不考虑重入的情况) 1. naive lock 最简单的想法是,搞一个volatile类型的共享变量flag,值可以是flase(无锁)或者tru ...

  4. 跳跃表-原理及Java实现

    跳跃表-原理及Java实现 引言: 上周现场面试阿里巴巴研发工程师终面,被问到如何让链表的元素查询接近线性时间.笔者苦思良久,缴械投降.面试官告知回去可以看一下跳跃表,遂出此文. 跳跃表的引入 我们知 ...

  5. 一致性Hash算法原理,java实现,及用途

    学习记录: 一致性Hash算法原理及java实现:https://blog.csdn.net/suifeng629/article/details/81567777 一致性Hash算法介绍,原理,及使 ...

  6. 从使用到原理学习Java线程池

    线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收. 所 ...

  7. 自旋锁原理及java自旋锁

    一.自旋锁的概念 首先是一种锁,与互斥锁相似,基本作用是用于线程(进程)之间的同步.与普通锁不同的是,一个线程A在获得普通锁后,如果再有线程B试图获取锁,那么这个线程B将会挂起(阻塞):试想下,如果两 ...

  8. synchronized与static synchronized 的差别、synchronized在JVM底层的实现原理及Java多线程锁理解

    本Blog分为例如以下部分: 第一部分:synchronized与static synchronized 的差别 第二部分:JVM底层又是怎样实现synchronized的 第三部分:Java多线程锁 ...

  9. 【转载】从使用到原理学习Java线程池

    线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收. 所 ...

随机推荐

  1. android studio学习----偏好设置

    主要找到设置的界面:Files->Settings , android studio里面没有preferences 1.字体大小设置 进入后你也许发现字体大小或者样式不符合你的习惯,比如我是觉得 ...

  2. ECharts将折线变平滑和去掉点的属性(转载)曲线变圆滑

    本文链接:https://blog.csdn.net/sinat_36422236/article/details/62430114 series : [ { name:'your name', sy ...

  3. windows10删除多出的oem分区

    某次windows升级后,磁盘管理里新出现一个500多M的OEM分区 其实系统里本来就有一个OEM分区是第一个分区,大小499M,可能因为这个分区太小,系统就又新建一个 因为在windows10分区后 ...

  4. 【转载】UNICODE与ASCII的区别

    原文地址:https://blog.csdn.net/lx697/article/details/5914417 最近的项目涉及到了国际化的问题,由于之前并没有接触到UNICODE编码,因此,在项目期 ...

  5. MySQL查询优化一例——也说说 Using intersect

    生产上面有一条sql查询很慢,需要7到8秒左右,简化之后的sql如下所示: SELECT mingxi.* FROM ( SELECT btjc01.id, department.`name` AS ...

  6. 在K8S集群中使用busybox-dig镜像,来作DNS解析分析

    以前,判断K8S里的DNS功能是否正常时,得想很多办法. 如果有了busybox-dig镜像,则作这事就简单多了. 如下命令,直接部署 kubectl run busybox -it --image= ...

  7. django 自定义分页,网址存储缓存,CBV

    1. 通过切片控制分页 自定义分页: from django.shortcuts import render # Create your views here. from app01.models i ...

  8. 字符串format()方法的基本使用

    <模板字符串>.format(<逗号分隔的参数>) 其中,模板字符串是一个由字符串和槽组成的字符串,用来控制字符串和变量的显示效果.槽用大括号({})表示,对应format() ...

  9. VIJOS-P1320 清点人数

    JDOJ 1427: VIJOS-P1320 清点人数 题目传送门 Description 初始时,火车上没有学生:当同学们开始上火车时,年级主任从第一节车厢出发走到最后一节车厢,每节车厢随时都有可能 ...

  10. docker的简单操作和端口映射

    一:简介 Docker镜像 在Docker中容器是基于镜像启动的 镜像是启动容器的核心 镜像采用分层设计,最顶层为读写层 使用快照COW技术,确保底层不丢失 通过ifconfig(ip  a)来查看d ...