AI-Sys

AI-Sys Spring 2019

Course Description

The recent success of AI has been in large part due in part to advances in hardware and software systems. These systems have enabled training increasingly complex models on ever larger datasets. In the process, these systems have also simplified model development, enabling the rapid growth in the machine learning community. These new hardware and software systems include a new generation of GPUs and hardware accelerators (e.g., TPU and Nervana), open source frameworks such as Theano, TensorFlow, PyTorch, MXNet, Apache Spark, Clipper, Horovod, and Ray, and a myriad of systems deployed internally at companies just to name a few. At the same time, we are witnessing a flurry of ML/RL applications to improve hardware and system designs, job scheduling, program synthesis, and circuit layouts.

In this course, we will describe the latest trends in systems designs to better support the next generation of AI applications, and applications of AI to optimize the architecture and the performance of systems. The format of this course will be a mix of lectures, seminar-style discussions, and student presentations. Students will be responsible for paper readings, and completing a hands-on project. Readings will be selected from recent conference proceedings and journals. For projects, we will strongly encourage teams that contains both AI and systems students.

Course Syllabus

This is a tentative schedule. Specific readings are subject to change as new material is published.

Jump to Today

Week  Date (Lec.)  Topic 
1 1/23/19 
( 1 )

Introduction and Course Overview

This lecture will be an overview of the class, requirements, and an introduction to what makes great AI-Systems research.

Slide Links

2 1/28/19 
( 2 )

Convolutional Neural Network Architectures

Minor Update: We have moved the reading on auto-encoders to Wednesday.

Reading notes for the two required readings below must be submitted using this google form by Monday the 28th at 9:30AM. We have asked that for each reading you answer the following questions:

  1. What is the problem that is being solved?
  2. What are the metrics of success?
  3. What are the key innovations over prior work?
  4. What are the key results?
  5. What are some of the limitations and how might this work be improved?
  6. How might this work have long term impact?

If you find some of the reading confusing and want a more gentle introduction, the optional reading contains some useful explanatory blog posts that may help.

Links

Additional Optional Reading

1/30/19 
( 3 )

More Neural Network Architectures

Links

 

Additional Optional Reading

3 2/4/19 
( 4 )

Deep Learning Frameworks

Links

 
2/6/19 
( 5 )

RL Systems & Algorithms

Links

 
4 2/11/19 
( 6 )

Application: Data Structure and Algorithms

Links

 
2/13/19 
( 7 )

Distributed Systems for ML

Links

 
5 2/18/19 
( 8 )

Administrative Holiday (Feb 18th)

2/20/19 
( 9 )

Hyperparameter search

Links

  • Reading Quiz due before class. There was a mix-up in updating the reading and the wrong paper was swapped. You may either read the Hyperband paper (preferred) or the Vizer paper (see optional reading) for the second reading.
  • A Generalized Framework for Population Based Training [pdf]
 
6 2/25/19 
( 10 )

Auto ML & Neural Architecture Search (1/2)

Links

 
2/27/19 
( 11 )

Auto ML & Neural Architecture Search (2/2)

Links

 
7 3/4/19 
( 12 )

Autonomous Vehicles

Links

  • Reading Quiz due before class.
  • Autonomous Vehicles Overview [pdfpptx]
  • Presentation: The Architectural Implications of Autonomous Driving[pdf]
 
3/6/19 
( 13 )

Deep Learning Compilers

Links

 
8 3/11/19 
( 14 )

Project Presentation Checkpoints

3/13/19 
( 15 )

Application: Program synthesis

Links

 
9 3/18/19 
( 16 )

Distributed Deep Learning (Part 1)

Links

 
3/20/19 
( 17 )

Distributed Deep Learning (Part 2)

Links

 
10 3/25/19 
( 18 )

Spring Break (March 25th)

3/27/19 
( 19 )

Spring Break (March 27th)

11 4/1/19 
( 20 )

Application: Networking

Links

 
4/3/19 
( 21 )

Dynamic Neural Networks

Links

 
12 4/8/19 
( 22 )

Model Compression

Links

 
4/10/19 
( 23 )

Applications: Security

Links

 
13 4/15/19 
( 24 )

Application: Prediction Serving

Links

 
4/17/19 
( 25 )

Natural Language Processing Systems

Links

 
14 4/22/19 
( 26 )

Explanability & Interpretability

Links

 
4/24/19 
( 27 )

Scheduling for DL Workloads

Links

  • Reading Quiz due before class.
  • DL Scheduling slides [pdf]
  • Dominant Resource Fairness (DRF) slides [pdf]
 
15 4/29/19 
( 28 )

Cortical Learning and Stoica Course Summary

Links

 

Additional Optional Reading

5/1/19 
( 29 )

Neural Modular Networks and Gonzalez Course Summary

Links

  • Reading Quiz due before class.
  • Neural Modular Networks Slides [pdfpptx]
  • Gonzalez Course Summary (Reflections on the Field of AI-Systems) [pdfpptx]
 
16 5/6/19 
( 30 )

RRR Week (May 6th)

5/8/19 
( 31 )

Poster Session from 9:00 to 11:00

17 5/13/19 
( 32 )

Final Reports Due

  • Due at 11:59 PM
  • Format: 8 pages (Google Doc)
  • Email link to jegonzal@berkeley.edu and istoica@berkeley.edu

Projects

Detailed candidate project descriptions will be posted shortly. However, students are encourage to find projects that relate to their ongoing research.

Grading

Grades will be largely based on class participation and projects. In addition, we will require weekly paper summaries submitted before class.

  • Projects: 60%
  • Weekly Summaries: 20%
  • Class Participation: 20%

Back to top

© 2017-2018 UC Berkeley · Privacy · Terms

SysML——AI-Sys Spring 2019的更多相关文章

  1. CSc 352 (Spring 2019): Assignment

    CSc 352 (Spring 2019): Assignment 11Due Date: 11:59PM Wed, May 1The purpose of this assignment is to ...

  2. 聚焦AI实践,2019 A2M峰会将在上海举行!

    18年,BERT重磅发布,刷新了很多NLP的任务的最好性能:KENSHO等智能化应用的成功应用,让知识图谱在证券行业的建设思路和应用实践成为业内较为关注的问题:强化学习也在与人类的对战游戏中独领风骚: ...

  3. The second curriculum design experiment report in spring 2019

    2019年第二次课程设计实验报告 一.实验项目名称 贪吃蛇 二.实验项目功能描述 1.小蛇的移动 玩家可以通过 W A S D控制小蛇的上左下右移动,通过函数改变小蛇部位的位置 2.判断游戏失败 当小 ...

  4. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  5. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

  6. python学习第二天 -----2019年4月17日

    第二周-第02章节-Python3.5-模块初识 #!/usr/bin/env python #-*- coding:utf-8 _*- """ @author:chen ...

  7. 从《华为的冬天》到AI的冬天 | 甲子光年

    知难不难,惶者生存. 作者 | DougLong 编辑 | 火柴Q.甲小姐 *本文为甲子光年专栏作家DougLong独家稿件.作者为AI从业者.Gary Marcus<Rebooting AI& ...

  8. Flink Forward Asia 2019 - 总结和展望(附PPT下载链接)

    11 月 28 - 30 日,北京迎来了入冬以来的第一场雪,2019 Flink Forward Asia(FFA)也在初雪的召唤下顺利拉开帷幕.尽管天气寒冷,FFA 实际到会人次超过 2000,同比 ...

  9. 技术沙龙|原来落地AI应用是这么回事儿!

    目前人工智能已经迈入应用落地之年,作为备受关注的话题,在重磅政策的加持下市场规模迅速扩大并渗透到各行各业的形势越发鲜明.在此背景下,作为国内不容忽视的创新企业之一,京东AI依托于NeuHub平台对数据 ...

随机推荐

  1. Node.js中的模块接口module.exports

    在写node.js代码时,我们经常需要自己写模块(module).同时还需要在模块最后写好模块接口,声明这个模块对外暴露什么内容.实际上,node.js的模块接口有多种不同写法.在此做了个简单的总结. ...

  2. Python进阶-XV 类和对象的命名空间 组合

    一.类和对象命名空间 1.类中可以定义两种属性 静态属性和动态属性 class Course: language = 'Chinese' # 静态属性 def __init__(self, name, ...

  3. 第02组Beta版本演示

    组长博客 组名:十一个憨比 本组组员: 学号 姓名 分工 贡献比例 181700413 黄智 写Beta冲刺的四次博客,写评审表,写word,统筹规划 9% 131700309 林闽沪 代码实现,答辩 ...

  4. 送书『构建Apache Kafka流数据应用』和『小灰的算法之旅』和『Java并发编程的艺术』

    读书好处 1.可以使我们增长见识. 2.可提高我们的阅读能力和写作水平. 3.可以使我们变的有修养. 4.可以使我们找到好工作. 5.可以使我们在竞争激烈的社会立于不败之地. 6.最大的好处是可以让你 ...

  5. 奥展项目笔记07--vue绑定下拉框和checkbox总结

    1.vue绑定下拉框 <div class="col-md-1 data"> <select class="form-control " v- ...

  6. .net core EF Core 视图的应用

    由之前的一篇文章<.net core Entity Framework 与 EF Core>我们都已经知道 EF Core 增加了许多特性,并且性能上也有了很大的提升. 但是EF Core ...

  7. EF CodeFirst 使用T4模板

    实用等级:★★★★★ 首先,定义一个接口,代表一个领域实体.在定义一个实体集成这个接口,面向接口编程的各种好处就不提了. /// <summary> /// 代表一个领域实体 /// &l ...

  8. Python学习之路 【目录】

           * Python之路[楔子]:PyCharm 专业版安装      * Python之路[第一篇]:Python简介和入门      * Python之路[第二篇]:Python基础(一 ...

  9. CSS3 transform 属性(2D,3D旋转)

    一.语法 div{ transform:rotate(7deg); -ms-transform:rotate(7deg); /* IE 9 */ -moz-transform:rotate(7deg) ...

  10. Java开发设计——七大原则

    Java开发设计——七大原则 摘要:本文主要介绍了在做面向对象开发时要注意的七个原则. 部分内容来自以下博客: https://www.cnblogs.com/xiyuekamisama/p/1057 ...