AI-Sys

AI-Sys Spring 2019

Course Description

The recent success of AI has been in large part due in part to advances in hardware and software systems. These systems have enabled training increasingly complex models on ever larger datasets. In the process, these systems have also simplified model development, enabling the rapid growth in the machine learning community. These new hardware and software systems include a new generation of GPUs and hardware accelerators (e.g., TPU and Nervana), open source frameworks such as Theano, TensorFlow, PyTorch, MXNet, Apache Spark, Clipper, Horovod, and Ray, and a myriad of systems deployed internally at companies just to name a few. At the same time, we are witnessing a flurry of ML/RL applications to improve hardware and system designs, job scheduling, program synthesis, and circuit layouts.

In this course, we will describe the latest trends in systems designs to better support the next generation of AI applications, and applications of AI to optimize the architecture and the performance of systems. The format of this course will be a mix of lectures, seminar-style discussions, and student presentations. Students will be responsible for paper readings, and completing a hands-on project. Readings will be selected from recent conference proceedings and journals. For projects, we will strongly encourage teams that contains both AI and systems students.

Course Syllabus

This is a tentative schedule. Specific readings are subject to change as new material is published.

Jump to Today

Week  Date (Lec.)  Topic 
1 1/23/19 
( 1 )

Introduction and Course Overview

This lecture will be an overview of the class, requirements, and an introduction to what makes great AI-Systems research.

Slide Links

2 1/28/19 
( 2 )

Convolutional Neural Network Architectures

Minor Update: We have moved the reading on auto-encoders to Wednesday.

Reading notes for the two required readings below must be submitted using this google form by Monday the 28th at 9:30AM. We have asked that for each reading you answer the following questions:

  1. What is the problem that is being solved?
  2. What are the metrics of success?
  3. What are the key innovations over prior work?
  4. What are the key results?
  5. What are some of the limitations and how might this work be improved?
  6. How might this work have long term impact?

If you find some of the reading confusing and want a more gentle introduction, the optional reading contains some useful explanatory blog posts that may help.

Links

Additional Optional Reading

1/30/19 
( 3 )

More Neural Network Architectures

Links

 

Additional Optional Reading

3 2/4/19 
( 4 )

Deep Learning Frameworks

Links

 
2/6/19 
( 5 )

RL Systems & Algorithms

Links

 
4 2/11/19 
( 6 )

Application: Data Structure and Algorithms

Links

 
2/13/19 
( 7 )

Distributed Systems for ML

Links

 
5 2/18/19 
( 8 )

Administrative Holiday (Feb 18th)

2/20/19 
( 9 )

Hyperparameter search

Links

  • Reading Quiz due before class. There was a mix-up in updating the reading and the wrong paper was swapped. You may either read the Hyperband paper (preferred) or the Vizer paper (see optional reading) for the second reading.
  • A Generalized Framework for Population Based Training [pdf]
 
6 2/25/19 
( 10 )

Auto ML & Neural Architecture Search (1/2)

Links

 
2/27/19 
( 11 )

Auto ML & Neural Architecture Search (2/2)

Links

 
7 3/4/19 
( 12 )

Autonomous Vehicles

Links

  • Reading Quiz due before class.
  • Autonomous Vehicles Overview [pdfpptx]
  • Presentation: The Architectural Implications of Autonomous Driving[pdf]
 
3/6/19 
( 13 )

Deep Learning Compilers

Links

 
8 3/11/19 
( 14 )

Project Presentation Checkpoints

3/13/19 
( 15 )

Application: Program synthesis

Links

 
9 3/18/19 
( 16 )

Distributed Deep Learning (Part 1)

Links

 
3/20/19 
( 17 )

Distributed Deep Learning (Part 2)

Links

 
10 3/25/19 
( 18 )

Spring Break (March 25th)

3/27/19 
( 19 )

Spring Break (March 27th)

11 4/1/19 
( 20 )

Application: Networking

Links

 
4/3/19 
( 21 )

Dynamic Neural Networks

Links

 
12 4/8/19 
( 22 )

Model Compression

Links

 
4/10/19 
( 23 )

Applications: Security

Links

 
13 4/15/19 
( 24 )

Application: Prediction Serving

Links

 
4/17/19 
( 25 )

Natural Language Processing Systems

Links

 
14 4/22/19 
( 26 )

Explanability & Interpretability

Links

 
4/24/19 
( 27 )

Scheduling for DL Workloads

Links

  • Reading Quiz due before class.
  • DL Scheduling slides [pdf]
  • Dominant Resource Fairness (DRF) slides [pdf]
 
15 4/29/19 
( 28 )

Cortical Learning and Stoica Course Summary

Links

 

Additional Optional Reading

5/1/19 
( 29 )

Neural Modular Networks and Gonzalez Course Summary

Links

  • Reading Quiz due before class.
  • Neural Modular Networks Slides [pdfpptx]
  • Gonzalez Course Summary (Reflections on the Field of AI-Systems) [pdfpptx]
 
16 5/6/19 
( 30 )

RRR Week (May 6th)

5/8/19 
( 31 )

Poster Session from 9:00 to 11:00

17 5/13/19 
( 32 )

Final Reports Due

  • Due at 11:59 PM
  • Format: 8 pages (Google Doc)
  • Email link to jegonzal@berkeley.edu and istoica@berkeley.edu

Projects

Detailed candidate project descriptions will be posted shortly. However, students are encourage to find projects that relate to their ongoing research.

Grading

Grades will be largely based on class participation and projects. In addition, we will require weekly paper summaries submitted before class.

  • Projects: 60%
  • Weekly Summaries: 20%
  • Class Participation: 20%

Back to top

© 2017-2018 UC Berkeley · Privacy · Terms

SysML——AI-Sys Spring 2019的更多相关文章

  1. CSc 352 (Spring 2019): Assignment

    CSc 352 (Spring 2019): Assignment 11Due Date: 11:59PM Wed, May 1The purpose of this assignment is to ...

  2. 聚焦AI实践,2019 A2M峰会将在上海举行!

    18年,BERT重磅发布,刷新了很多NLP的任务的最好性能:KENSHO等智能化应用的成功应用,让知识图谱在证券行业的建设思路和应用实践成为业内较为关注的问题:强化学习也在与人类的对战游戏中独领风骚: ...

  3. The second curriculum design experiment report in spring 2019

    2019年第二次课程设计实验报告 一.实验项目名称 贪吃蛇 二.实验项目功能描述 1.小蛇的移动 玩家可以通过 W A S D控制小蛇的上左下右移动,通过函数改变小蛇部位的位置 2.判断游戏失败 当小 ...

  4. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  5. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

  6. python学习第二天 -----2019年4月17日

    第二周-第02章节-Python3.5-模块初识 #!/usr/bin/env python #-*- coding:utf-8 _*- """ @author:chen ...

  7. 从《华为的冬天》到AI的冬天 | 甲子光年

    知难不难,惶者生存. 作者 | DougLong 编辑 | 火柴Q.甲小姐 *本文为甲子光年专栏作家DougLong独家稿件.作者为AI从业者.Gary Marcus<Rebooting AI& ...

  8. Flink Forward Asia 2019 - 总结和展望(附PPT下载链接)

    11 月 28 - 30 日,北京迎来了入冬以来的第一场雪,2019 Flink Forward Asia(FFA)也在初雪的召唤下顺利拉开帷幕.尽管天气寒冷,FFA 实际到会人次超过 2000,同比 ...

  9. 技术沙龙|原来落地AI应用是这么回事儿!

    目前人工智能已经迈入应用落地之年,作为备受关注的话题,在重磅政策的加持下市场规模迅速扩大并渗透到各行各业的形势越发鲜明.在此背景下,作为国内不容忽视的创新企业之一,京东AI依托于NeuHub平台对数据 ...

随机推荐

  1. python socket编程腾讯云下报错[Errno 99] Cannot assign requested address的解决方式

    先写服务端server.py: import socket import time HOST = '172.17.xx.xx' #服务器的私网IP #HOST = 'localhost' PORT = ...

  2. SQL Server关系的创建

    如果两个表的相关列都是主键或具有唯一约束,创建的就是一对一关系. 如果只有一列具有主键或唯一约束,则创建的时一对多关系 关联字段的字符类型必须相同. 1. 一对一关系 USE [Howie] crea ...

  3. C getchar()

    C getchar() #include <stdio.h> int main() { ; char str[size]; ; char ch; printf("Enter wh ...

  4. PHP 中的关于 trait 的简单

    什么是 trait 看看 PHP 官网的介绍. 自 PHP 5.4.0 起,PHP 实现了一种代码复用的方法,称为 trait. Trait 是为类似 PHP 的单继承语言而准备的一种代码复用机制.T ...

  5. 搜索旋转排序数组II

    题目 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [,,,,,,] 可能变为 [,,,,,,] ). 编写一个函数来判断给定的目标值是否存在于数组中.若存在返回 true, ...

  6. kali渗透综合靶机(十三)--Dina 1.0靶机

    kali渗透综合靶机(十三)--Dina 1.0靶机 一.主机发现 1.netdiscover -i eth0 -r 192.168.10.0/24 二.端口扫描 1. masscan --rate= ...

  7. SpringBoot2.x|Thymeleaf页面不能正常载入css、js文件

    1.实现实现WebMvcConfig配置类可以解决页面不能加载css,js的问题: 扩展SpringMvc,编写一个配置类(@Configuration),是WebMvcConfigurationAd ...

  8. WEB网站发布服务器IIS报错问题终极解决方案,查到问题点

    4本次错误webservice发布新服务器后,出现此错误. 解决方法: 找到dmp文件 dmp文件是啥?自己百度.简单的说就是黑匣子,记录程序崩溃前的操作,那么如何找到这个黑匣子呢? 1.启动 Win ...

  9. Asp.Net Mvc日志处理

    /// <summary> /// 日志处理帮助类 /// </summary> public class LogHelper { private static Queue&l ...

  10. PIE SDK水体指数法

    1.算法功能简介 单波段阈值法是通过选择某单一波段为判识参数,这一波段往往是水体特征最明显而其它地物相对不太突出的波段(如近红外波段和中红外波段),然后再划定阈值来确定水体信息.该方法主要是利用水体在 ...