点此看题面

大致题意: 求\(\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\)。

推式子

不会莫比乌斯反演的可以先去看这篇博客:初学莫比乌斯反演

反演题显然就是推式子啊~~~

考虑\(lcm\)这个东西不好做,所以我们先把它化成\(gcd\):

\[\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}
\]

接下来就是按照套路枚举\(gcd\)了:

\[\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}ij[gcd(i,j)=1]
\]

由于\([gcd(i,j)=1]\)这个式子不好直接搞,因此我们要进行转化。

想到\(e(n)=[n=1]\),所以这个式子就相当于\(e(gcd(i,j))\)。

而\(\mu*I=e\),所以:

\[e(gcd(i,j))=\sum_{p|gcd(i,j)}\mu(p)\cdot I(\frac{gcd(i,j)}p)=\sum_{p|gcd(i,j)}\mu(p)
\]

也就是说,原式即为:

\[\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}ij\sum_{p|gcd(i,j)}\mu(p)
\]

然后我们改为枚\(p\),得到:

\[\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{\lfloor\frac{min(n,m)}d\rfloor}\sum_{i=1}^{\lfloor\frac n{dp}\rfloor}\sum_{j=1}^{\lfloor\frac m{dp}\rfloor}ijp^2\mu(p)
\]

整理一下式子,调整一下顺序,得到:

\[\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{\lfloor\frac{min(n,m)}d\rfloor}p^2\mu(p)\sum_{i=1}^{\lfloor\frac n{dp}\rfloor}i\sum_{j=1}^{\lfloor\frac m{dp}\rfloor}j
\]

设\(S(n)=\sum_{i=1}^ni=\frac{n(n+1)}2\),则可得原式等于:

\[\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{\lfloor\frac{min(n,m)}d\rfloor}p^2\mu(p)S(\lfloor\frac n{dp}\rfloor)S(\lfloor\frac m{dp}\rfloor)
\]

那么我们预处理\(p^2\mu(p)\)的值,然后二维除法分块枚举\(d,p\),就可以得出答案了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 10000000
#define X 20101009
#define min(x,y) ((x)<(y)?(x):(y))
using namespace std;
int n,m,t,f[N+5];
class LinearSiever//线性筛
{
private:
int Pt,mu[N+5],P[N+5];
public:
int F[N+5];
I void Sieve(CI S)
{
RI i,j;for(mu[1]=1,i=2;i<=S;++i)//筛mu
{
!P[i]&&(mu[P[++Pt]=i]=-1);
for(j=1;j<=Pt&&1LL*i*P[j]<=S;++j)
if(P[i*P[j]]=1,i%P[j]) mu[i*P[j]]=-mu[i];else break;
}
for(i=1;i<=S;++i) F[i]=(1LL*i*i%X*(mu[i]+X)+F[i-1])%X;//预处理p^2mu(p)
}
}L;
I int S(CI x) {return (1LL*x*(x+1)>>1)%X;}//计算从1到x的和
int main()
{
RI l,r,ll,rr,res,ans=0;scanf("%d%d",&n,&m),L.Sieve(t=min(n,m));
for(l=1;l<=t;l=r+1)//第一维除法分块
{
res=0,r=min(n/(n/l),m/(m/l));
for(ll=1;ll<=t/l;ll=rr+1) rr=min((n/l)/(n/l/ll),(m/l)/(m/l/ll)),//第二维除法分块
res=(1LL*(L.F[rr]-L.F[ll-1]+X)%X*S(n/l/ll)%X*S(m/l/ll)+res)%X;
ans=(1LL*(S(r)-S(l-1)+X)%X*res+ans)%X;//统计答案
}return printf("%d",ans),0;//输出答案
}

【洛谷1829】 [国家集训队] Crash的数字表格(重拾莫比乌斯反演)的更多相关文章

  1. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  2. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...

  3. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  4. [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】

    传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...

  5. 洛谷P1829 [国家集训队]Crash的数字表格

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...

  6. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  7. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  8. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

  9. P1829 [国家集训队]Crash的数字表格

    P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...

随机推荐

  1. Istio Routing极简教程

    官网文档: https://istio.io/docs/reference/config/networking/#VirtualService 在学习像Istio这样的新技术时,看一下示例应用程序总是 ...

  2. Oracle数据库的关键系统服务整理

    在Windows 操作系统下安装Oracle 9i时会安装很多服务——并且其中一些配置为在Windows 启动时启动.在Oracle 运行在Windows 下时,有些服务可能我们并不总是需要但又害怕停 ...

  3. 在Azure DevOps Server中运行基于Spring Boot和Consul的微服务项目单元测试

    1 概述 谈到微服务架构体系,绕不开服务发现这个功能.服务发现机制是简化微服务配置.实现容灾.水平扩缩容.提高运维效率的重要方式.在服务发现工具中,Consul在部署和使用方面与容器结合的天衣无缝,成 ...

  4. (三十三)golang--面向对象之继承

    继承可以解决代码复用: 实现:只需要在结构体中嵌套一个匿名结构体: 结构体可以使用匿名结构体中所有字段核方法:无论是大写还是小写: 可以简化访问匿名结构体中的属性和方法: 当该结构体和匿名结构体有相同 ...

  5. ThinkPHP框架获取上一条插入语句产生的id

    今天在fastAdmin框架想搞一个拖动进行排序的功能 遇到一个问题是权重的字段值一样的话拖动会出bug,所以想让权重字段(weigh)的值等于当前id的值, 搜索看到的方法如下 实际应用的地方,是写 ...

  6. sitecore系列教程场所分类简介

    在Sitecore体验平台(XP)中,场所是可跟踪的离线交互发生的位置.这些是发生交互的物理位置,例如特定的零售场所或公共汽车站. 您可以使用场所分类记录特定交互发生的位置.此信息保存在体验数据库(x ...

  7. Kafka 2.3 Producer (0.9以后版本适用)

    kafka0.9版本以后用java重新编写了producer,废除了原来scala编写的版本. 这里直接使用最新2.3版本,0.9以后的版本都适用. 注意引用的包为:org.apache.kafka. ...

  8. FreeBSD Set a Default Route / Gateway

    Task: View / Display FreeBSD Routing Table Use netstat command with -r option:$ netstat -r$ netstat ...

  9. C# CSV Generic T

    This artice will write the main step to export generic data via csv with complete code and step by s ...

  10. C# 之扩展方法

    在编程过程中,有时由于新的需求,可能就会需要对类型进行修改,但当需要为类型添加新功能但并不拥有类型的已有代码时,就需要用到 扩展方法; 使用扩展方法的方式:创建一个新的类,这个类必须是静态类. 在这个 ...