https://marutitech.com/ways-ai-transforming-finance/

As global technology has evolved over the years, we have moved from television to the internet, and today we are smoothly and gradually adapting Artificial Intelligence. The term AI was first coined by John McCarthy in 1956. It involves a lot of the main things ranging from process automation of robotics to the actual process of robotics. It has become highly popular among large enterprises today owing to the amount of data these companies are dealing in. Increase in the demand for understanding the data patterns has led to the growth in demand of AI. AI processes are much more efficient in identifying data patterns than humans which is beneficial for companies to understand their target audience and gain insight. Thousands of companies all around the world are looking at AI as the next big thing for the finance industry.

AI basically is of two types –

  1. Weak AI
  2. Strong AI

Weak AI

Weak AI, which can also be described as Narrow AI is the system which is set up only to fulfill or accomplish a particular task. It is designed in a way which can help solve specific problems. Weak AI works according to the rules that are set and is bound by it. It does not go beyond the rules set. It focuses on only the narrow tasks and does the best job at it. Weak AI just like humans has the capability of all cognitive functions and is not distinct from the human mind. Though it cannot be defined as general intelligence, rather it is designed to act intelligently towards completing the narrow tasks that are assigned to it.

The best example of weak AI is Apple’s Siri which is governed by the substantial database of the internet. It appears very intelligent, primarily because of the conversations that it is able to hold with humans. Siri also is known for its witty remarks, but in actuality, it operates in a predefined manner. The “narrowness” is witnessed when the system engages in conversations that it is not designed to respond correctly to.

Same is the case of robots which are used in manufacturing companies. They respond very aptly when asked questions by the customers and clients. The responses are accurate and sometimes very witty too. The AI is capable of managing situations which are extremely complex in nature. But their intelligence level is restricted to providing solutions to problems that the system is programmed for, anything beyond that cannot be accomplished by it.

Strong AI

Strong AI, also known as full AI has much bigger prospects than the Weak AI. It is the artificial intelligence that has huge capabilities and functionality. It can broadly mimic the human brain. It is so powerful that the actions performed by the system are exactly similar to the actions and decisions of a human being. It also has the understanding power and consciousness.

Strong AI is actually a process which can be entirely equated to the human mind. Artificial Intelligence in every sense functions like the human mind with the extraordinary capability to understand everything that can be understood by it. The beliefs, cognitive states and perception which can be only found in humans are programmed in strong AI.

However, the difficulty lies in defining intelligence accurately. It is almost impossible or highly difficult to determine success or set boundaries to intelligence as far as strong AI is concerned. Hence weak AI is more preferable, primarily because of its ability to accomplish mainly assigned tasks with optimum efficiency. Weak AI does not fully encompass intelligence rather it focuses on completing a particular task it is assigned to complete. Hence it can be broken down into smaller processes.

Artificial Intelligence is the intelligence which is shown by machines and not humans. Devices using their cognitive functions identify and solve problems just like humans or in most cases solve better. It has successfully managed to create a significant impact by doing what is thought as impossible.

However, it is the finance industry which is claimed to have benefitted the most with the help of Artificial Intelligence. Cognitive computingChatbots, Personal Assistant, Machine Learning are all peripherals of AI used in the finance industry extensively nowadays. Some financial organizations have been investing significantly in AI for years now, and much many are now willing to invest in AI.

AI is predicted to replace humans in the near future as companies start looking for features such as machine learning, personal assistants/advisors or digital labor. Owing to the big data, cloud services, and hyper processing systems, AI has gained popularity. But the greatest challenges faced are lack of trust, biases and majorly regulatory concern. Hence, companies today prefer a reliable option in the form of Augmented Intelligence which is designed to assist humans.

Artificial Intelligence can be used abundantly in processes which involve auditing of financial transactions. Also when it comes to analyzing an enormous number of pages of the tax changes, AI can be of great help. It can be expected in the near future to see companies relying on AI to make significant firm related decisions. AI also has the capability to identify how customers are going to react to various situations and problems. Artificial Intelligence is going to help people and firms make smarter decisions at a very quick pace. But the key here is to find the right balance between humans and machines.

5 WAYS HOW AI HAS TRANSFORMED THE FINANCE INDUSTRY ARE –

1. Risk Assessment:

Since the very basis of AI is learning from past data; it is natural that AI should succeed in the Financial Services domain, where bookkeeping and records are second nature to the business. Let’s take the example of credit cards. Today, we use credit score as a means of deciding who is eligible for a credit card and who isn’t. However, grouping people into ‘haves’ and ‘have-nots’ is not always efficient for business. Instead, data about each individual’s loan repayment habits, the number of loans currently active, the number of existing credit cards, etc. can be used to customize the interest rate on a card such that it makes more sense to the financial institution that is offering the card. Now, take a minute to think about which system has the capability to go through thousands of personal financial records to come up with a solution- a learned machine of course! This is where AI comes in. Since it is data driven and data dependent, scanning through these records also gives AI the ability to make a recommendation of loan and credit offerings which make historical sense.

AI and ML are taking the place of a human analyst very fast as inaccuracies which are involved in human selection may cost millions. AI is built upon machine learning which learns over time, less possibility of mistake and analyzing vast volumes of data; AI has established automation to the areas which require, intelligent analytical and clear-thinking. ChatBots have indeed proven themselves as a powerful tool to customer satisfaction and an unmatched resource for the enterprises helping them save a lot of time and money. Now, getting back to Facebook’s endeavors in designing and developing Bots to make negotiations the way humans do, let us analyze the chances of the success of this research. This new technology will not only change the way we do business but also non-commercial activities. The example of non-commercial activities can include fixing meeting time. The Bots can fix up the meetings keeping in mind the availability of everyone involved in the meeting.

2. Fraud Detection And Management:

Every business aims to reduce the risk conditions that surround it. This is even true for a financial institution. The loan a bank gives you is basically someone else’s money, which is why you also get paid an interest on deposits and dividends on investments. This is also why banks and financial institutions take fraud very, very seriously. AI is on top when it comes to security and fraud identification. It can use past spending behaviors on different transaction instruments to point out odd behavior, such as using a card from another country just a few hours after it has been used elsewhere, or an attempt to withdraw a sum of money that is unusual for the account in question.Another excellent feature of fraud detection using AI is that the system has no qualms about learning. If it raises a red flag for a regular transaction and a human being corrects that, the system can learn from the experience and make even more sophisticated decisions about what can be considered fraud and what cannot.

3. Financial Advisory Services:

According to the Pwc Report, we can look forward to more robo-advisors. As the pressure increases on financial institutions to reduce their rates of commission on individual investments, machines may do what humans don’t- work for a single down payment. Another evolving field is bionic advisory, which combines machine calculations and human insight to provide options that are much more efficient than what their individual components provide.Collaboration is key. It is not enough to look at a machine as an accessory, or on the other end, as an insufferable know-it-all. An excellent balance and the ability to look at AI as a component in decision-making that is as important as the human viewpoint is the future of financial decision-making.

4. Trading:

Investment companies have been relying on computers and data scientists to determine future patterns in the market. As a domain, trading and investments depend on the ability to predict the future accurately. Machines are great at this because they can crunch a huge amount of data in a short while. Machines can also be taught to observe patterns in past data and predicthow these patterns might repeat in the future. While anomalies such as the 2008 financial crisis do exist in data, a machine can be taught to study the data to find ‘triggers’ for these anomalies, and plan for them in future forecasting as well.What’s more, depending on individual risk appetite, AI can suggest portfolio solutions to meet each person’s demand. So a person with a high-risk appetite can count on AI for decisions on when to buy, hold and sell stock. One with a lower risk appetite can receive alerts for when the market is expected to fall, and can thus make a decision about whether to stay invested in the market or to move out.

5. Managing Finance:

Managing finances in this well-connected and the materialistic world can be a challenging task for so many of us, as we look further into the future we can seeAI helping us to manage our finances. PFM (personal financial management) is one of the recent developments on the AI-based wallet. Walletstarted by a San Francisco based startup, uses AI to builds algorithms to help the consumers make smart decisions about their money when they are spending it. The idea behind the wallet is very simple it just accumulates all the data from your web footprint and creates your spending graph. Advocates of privacy breaching on the internet may find it offensive but, maybe be this is what lies in future. Thus it has to be the preferred personal financial management in order to save time from making lengthy spreadsheets or writing on a piece of paper. From a small-scale investment to a large scale investment AI commits to be a watchdog of future for managing finances.

Without a speck of doubt, AI is the future for the finance industry. Since the speed at which it is making progressive steps towards making the financial processes easier for the customers, it is very soon going to replace humans and provide faster and much more efficient solutions. Bots are gradually evolving as innovations are being in the AI sector. Massive investments are being made by the firms who are seeing this as a long-term cost-cutting investment. It helps the companies in saving money of hiring humans and also avoiding human errors in this process.

Though it is still in its nascent stage the speed at which it is progressing to evolve the finance sector, it can be well expected that the prospects are going to lead to minor losses, smarter trading and of course top-notch customer experience.

5 Ways AI is Transforming the Finance Industry的更多相关文章

  1. AI AND THE BOTTOM LINE: 15 EXAMPLES OF ARTIFICIAL INTELLIGENCE IN FINANCE

    https://builtin.com/artificial-intelligence/ai-finance-banking-applications-companies f there's one ...

  2. Finance and Good Society

    Finance is a technology of great power. It plays an important role in our society which range from t ...

  3. 5G和AI机器人平台为工业4.0和无人机提供服务

    5G和AI机器人平台为工业4.0和无人机提供服务 Qualcomm 5G and AI robotics platform delivers for Industry 4.0 and drones 高 ...

  4. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  5. python瓦登尔湖词频统计

    #瓦登尔湖词频统计: import string path = 'D:/python3/Walden.txt' with open(path,'r',encoding= 'utf-8') as tex ...

  6. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  7. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  8. 7 Exciting Uses of Machine Learning in FinTech

    https://rubygarage.org/blog/machine-learning-in-fintech Machine learning (ML) has moved from the per ...

  9. UVa 104 - Arbitrage(Floyd动态规划)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

随机推荐

  1. 安装更新时出现一些问题,但我们稍后会重试。如果你继续看到此错误,并且想要搜索 Web 或联系支持人员以获取相关信息,以下信息可能会对你有帮助: (0x80070426)

    安装更新时出现一些问题,但我们稍后会重试.如果你继续看到此错误,并且想要搜索 Web 或联系支持人员以获取相关信息,以下信息可能会对你有帮助: (0x80070426) https://answers ...

  2. 物联网架构成长之路(39)-Bladex开发框架环境搭建

    0.前言 上一篇博客已经介绍了,阶段性小结.目前第一版的物联网平台已经趋于完成.框架基本不变了,剩下就是调整一些UI,还有配合硬件和市场那边,看看怎么推广这个平台.能不能挣点外快.第一版系统虽然简陋, ...

  3. Qt 编译配置相关总结

    MinGW 与 MSVC 编译的区别 我们可以从 Qt 下载页面看到两种版本编译器,如下图: 我们来对比一下这两个编译器的区别: MSVC 是指微软的 VC 编译器. MinGW 是 Minimali ...

  4. 【mysql】修改mysql数据库密码

    修改mysql数据库密码 操作系统:Linux centos7 数据库:mysql5.7 一.在已知MYSQL数据库的ROOT用户密码的情况下,修改密码 1.在Linux命令行,使用mysqladmi ...

  5. golang编译器:gccgo vs gc

    GCC是一个功能强大的编译器,不仅可以编译我们很熟悉的C/C++,也可以做为Fortran.Pascal.Objective-C等语言的编译器.而GCCGO则是GCC专门用来编译Golang语言的.G ...

  6. 云原生生态周报 Vol.9| K8s v1.15 版本发布

    本周作者 | 衷源.心贵 业界要闻 1.Kubernetes Release v1.15 版本发布,新版本的两个主题是持续性改进和可扩展性.(https://github.com/kubernetes ...

  7. War 包部署

    Springboot 进行war包部署,以及踩坑历险!!! https://www.jianshu.com/p/4c2f27809571 Springboot2项目配置(热部署+war+外部tomca ...

  8. PERFORM参数传递

    参数传递:将主程序变量传递给子例程形式参数传递类型值传:子例程中参数变量的值的改变,不影响外部程序实际变量的值. , B , C TYPE I. WRITE:'A=',A,'B=',B,'C=',C. ...

  9. python匹配ip地址

    ip地址是用3个'.'号作为分隔符,分割4个数字,每个数字的取值在[0,255],一般日志文件中的ip地址都是有效的ip地址,不需要我们再去验证,因此,若从日志文件中提取ip,那么可以简单写成这样: ...

  10. mask-rcnn代码解读(六):resize_image()函数的解析

    我已经根据resize_image()函数的解析对原图像与resize图像进行了解析, 若有读者想对原图像与目标图像不同尺寸验证,可根据以下代码,调整函数参数, 其细节如下: import cv2 a ...