11/7 <Dynamic Programming>
62. Unique Paths
方法一: 二位数组
而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,需要用动态规划 Dynamic Programming 来解,可以维护一个二维数组 dp,其中 dp[i][j] 表示到当前位置不同的走法的个数,然后可以得到状态转移方程为: dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
class Solution {
public int uniquePaths(int m, int n) {
int[][] result = new int[m][n];
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(i == 0 || j == 0)
result[i][j] = 1;
else
result[i][j] = result[i - 1][j] + result[i][j - 1];
}
}
return result[m - 1][n - 1];
}
}
方法二:
为了节省空间,实际上我们只需要记录遍历到(i, j)这个位置的时候当前行有几种路径,如果遍历到(i, m-1)的时候,替换掉这一行对应列的路径即可,于是状态转移方程编程:
dp[j] = dp[j] + dp[j-1]
class Solution {
public int uniquePaths(int m, int n) {
int[] dp = new int[n];
dp[0] = 1;
for(int i = 0; i < m; i++){
for(int j = 1; j < n; j++){
dp[j] += dp[j-1];
}
}
return dp[n-1];
}
}
63. Unique Paths II
如果有障碍,则dp[j] = 0;
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int width = obstacleGrid[0].length;
int[] dp = new int[width];
dp[0] = 1;
for(int[] row : obstacleGrid){
for(int j = 0; j < width; j++){
if(row[j] == 1)
dp[j] = 0;
else if(j > 0)
dp[j] += dp[j - 1];
}
}
return dp[width - 1];
}
}
11/7 <Dynamic Programming>的更多相关文章
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical
http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...
- [Optimization] Dynamic programming
“就是迭代,被众人说得这么玄乎" “之所以归为优化,是因为动态规划本质是一个systemetic bruce force" “因为systemetic,所以比穷举好了许多,就认为是 ...
- [Optimization] Advanced Dynamic programming
这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...
- Speeding Up The Traveling Salesman Using Dynamic Programming
Copied From:https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b ...
- 详解动态规划(Dynamic Programming)& 背包问题
详解动态规划(Dynamic Programming)& 背包问题 引入 有序号为1~n这n项工作,每项工作在Si时间开始,在Ti时间结束.对于每项工作都可以选择参加与否.如果选择了参与,那么 ...
- #C++初学记录(动态规划(dynamic programming)例题1 钞票)
浅入动态规划 dynamic programming is a method for solving a complex problem by breaking it down into a coll ...
随机推荐
- java8 LinkedHashMap 原理
LinkedHashMap 原理 基于jdk1.8 HashMap原理:http://www.cnblogs.com/zhaojj/p/7805376.html LinkedHashMap 继承Has ...
- Ubuntu中如何使得程序在后台运行
Ubuntu中如何使得程序在后台运行 一.前言 在Ubuntu中有的程序启动需要执行改程序./bin目录下的文件,并且启动之后这个shell就不能使用和关闭了,非常的麻烦,因此就有了相应的命令来解决这 ...
- RocketMQ的顺序消费和事务消费
一.三种消费 :1.普通消费 2. 顺序消费 3.事务消费 1.1 顺序消费:在网购的时候,我们需要下单,那么下单需要假如有三个顺序,第一.创建订单 ,第二:订单付款,第三:订单完成.也就是这个三个 ...
- navcat搜索字符串方法
navcat搜索字符串方法右键点击数据库 查找字符串即可..
- ASCll编码,
- 关于@Autowired后Spring无法注入的问题
1.对于新手来说,最明显的不过是在applicationContext.xml文件上没有加<context:component-scan base-package="com.xxx&q ...
- SQL 除去数字中多于的0
/* 除掉多于的0 */ CREATE FUNCTION [dbo].[fn_ClearZero] ( ) ) ) AS BEGIN ); IF (@inValue = '') SET @return ...
- LeetCode——Nth Highest Salary
Write a SQL query to get the nth highest salary from the Employee table. +----+--------+ | Id | Sala ...
- Writing Your Own Widget(自定义组件)
英文地址:http://dojotoolkit.org/reference-guide/1.10/quickstart/writingWidgets.html#quickstart-writingwi ...
- 转:Oracle的列转行函数:LISTAGG()
先看示例代码: with temp as( select 'China' nation ,'Guangzhou' city from dual union all select 'China' nat ...