【LG4437】[HNOI/AHOI2018]排列

题面

洛谷

题解

题面里这个毒瘤的东西我们转化一下:

对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\)。

也就是说若\(y=a_x\),则\(y\)排在\(x\)前面,

那么我们在原数组编号中\(a_x\)向\(x\)连边可以表示出这种拓扑关系。

那么我们连玩边后肯定是以\(0\)为根的一颗有根树,否则一定会形成一个环,无解。

贪心地想一下,对于权值最小的点,我们肯定让它尽量往前选,那么在它父亲选完后,我们一定会选它,所以我们可以考虑把它的权值并到它父亲上。

这样子的话,我们每个点就变成了一个序列,

考虑两个序列\(a,b\)的合并方式决定最优答案(当前已经到了第\(i\)位):

\[W_{ab}=\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j+m_1)w_{b_j}​\\
W_{ba}=\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j+m_2)w_{a_j}​\\
W_{ab}-W_{ba}=m_1W_b-m_2W_a​
\]

那么如果\(W_{ab}>W_{ba}\)则\(\frac{W_a}{m_1}<\frac{W_b}{m_2}​\),也就是平均数小的放前面。

具体实现详见代码。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 5e5 + 5;
struct Graph { int next, to; } e[MAX_N << 1]; int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){fir[u], v}; fir[u] = e_cnt++; }
bool vis[MAX_N];
int N, tot, pa[MAX_N], fa[MAX_N], size[MAX_N];
long long w[MAX_N];
void dfs(int x) {
vis[x] = 1, ++tot;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (vis[v]) { puts("-1"); exit(0); }
else dfs(v);
}
}
int getf(int x) { return pa[x] == x ? x : pa[x] = getf(pa[x]); } struct Node { int u, sz; long long w; } ;
bool operator < (const Node &l, const Node &r) { return l.w * r.sz > r.w * l.sz; }
struct Heap{
Node h[MAX_N]; int cur;
Node top() { return h[1]; }
void push(const Node &x) { h[++cur] = x; push_heap(&h[1], &h[cur + 1]); }
void pop() { pop_heap(&h[1], &h[cur + 1]); --cur; }
bool empty() { return cur == 0; }
} que;
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi();
for (int i = 1; i <= N; i++) fa[i] = gi(), Add_Edge(fa[i], i);
for (int i = 1; i <= N; i++) w[i] = gi();
dfs(0); if (tot <= N) return puts("-1") & 0;
for (int i = 0; i <= N; i++) pa[i] = i, size[i] = 1;
for (int i = 1; i <= N; i++) que.push((Node){i, 1, w[i]});
long long ans = 0;
while (!que.empty()) {
Node p = que.top(); que.pop();
int u = getf(p.u);
if (size[u] != p.sz) continue;
int f = getf(fa[u]); pa[u] = f;
ans += w[u] * size[f], w[f] += w[u], size[f] += size[u];
if (f) que.push((Node){f, size[f], w[f]});
}
printf("%lld\n", ans);
return 0;
}

【LG4437】[HNOI/AHOI2018]排列的更多相关文章

  1. [HNOI/AHOI2018]排列 贪心

    题面 题解: 把题面的限制换成中文: 如果排在第k位的下标 = 排在第j位的值 ,那么k < j 换一个描述方式: 一个值为x的数要排在第x个数后面. 再换一个描述方式: \(fa[i] = a ...

  2. [HNOI/AHOI2018]排列

    [Luogu4437] 如果\(a[i]=j\)则序列\(p[]\)中\(j\)必须排在\(i\)前面,如果\(j\)不在范围内则不管,求一个式子\(\sum_{i=1}^n iw_{p[i]}\)的 ...

  3. 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)

    题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...

  4. BZOJ5289 HNOI/AHOI2018排列(贪心+堆)

    题面描述的相当绕,其实就是如果ai=j,重排后ai要在aj之后.同时每个ai有附属属性wi,要求最大化重排后的Σiwi. 容易发现这事实上构成一张图,即由j向i连边.由于每个点入度为1或0,该图是基环 ...

  5. 【洛谷 P4437】 [HNOI/AHOI2018]排列(贪心,堆)

    题目链接 如果\(j<=k,a_{p[j]}!=p[k]\)可以理解为如果\(a_{p[j]}=p[k]\),那么\(k\)一定要放在\(j\)前面,也就是\(a_j\)在\(j\)前面. 于是 ...

  6. BZOJ5289 & 洛谷4437:[HNOI/AHOI2018]排列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5289 https://www.luogu.org/problemnew/show/P4437 考虑 ...

  7. Poj2054 color a tree && [HNOI/AHOI2018]排列

    https://zybuluo.com/ysner/note/1120723 题面 原题 某省选强化题 大致意思是给你一颗树,选父亲后才能选儿子. 每个点对答案的贡献为你在第几次选这个点 × 该点权值 ...

  8. luogu P4437 [HNOI/AHOI2018]排列

    luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...

  9. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

随机推荐

  1. flash判断,及安装注意

    使用下面方法判断flash版本 function flashChecker() { var hasFlash = 0; //是否安装了flash var flashVersion = 0; //fla ...

  2. (三十四)golang--接口

    golang的多态特性主要体现在接口上: 主要优势:高内聚低耦合: package main import ( "fmt" ) type usb interface { start ...

  3. CentOS 下安装 Cmake 步骤

    最近在虚拟机中的 CentOS 中安装 Cmake.把安装步骤记录在此. 什么是 Cmake CMake 是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各 ...

  4. CodeForce 192D Demonstration

    In the capital city of Berland, Bertown, demonstrations are against the recent election of the King ...

  5. Oracle数据库rownum用法集锦

    Oracle中rownum可以用来限制查询 具体用法: 1.返回查询集合中的第1行 select * from tableName where rownum = 1 2.返回查询集合中的第2行 错误示 ...

  6. 什么是IDE(集成开发环境)?

    实际开发中,除了编译器是必须的工具,我们往往还需要很多其他辅助软件,例如: 编辑器:用来编写代码,并且给代码着色,以方便阅读: 代码提示器:输入部分代码,即可提示全部代码,加速代码的编写过程: 调试器 ...

  7. python操作时间

    一.问题背景 在对数据进行操作的时候我们总是会遇到数据类型是date类型的数据,这种数据会让我们在使用和操作的过程中遇到一些问题,比如int类型和date类型不对等,string类型和date类型不对 ...

  8. SkyWalking分布式链路追踪和监控-项目实战

    微服务框架落地后,分布式部署架构带来的问题就会迅速凸显出来.服务之间的相互调用过程中,如果业务出现错误或者异常,如何快速定位问题?如何跟踪业务调用链路?如何分析解决业务瓶颈?本专栏将引入Skywalk ...

  9. Elasticsearch PUT 插入数据

    { "error": { "root_cause": [ { "type": "illegal_argument_exceptio ...

  10. Out,ref,params修饰符,可选参数,命名参数

    out输出,在调用函数中声明,在被调用函数中赋值: ref在调用函数中赋值,后调用: params修饰符,static double CalculateAverage(params[] values) ...