Winograd Convolution 推导 - 从1D到2D
Winograd Convolution 推导 - 从1D到2D
1D Winograd 卷积
1D Winograd算法已经有很多文章讨论了,讨论得都比较清楚,这里就不再赘述,仅列出结论。
输入:四维信号
卷积核: 三维向量
输出: 二维信号
则可表示为:
其中:
2D Winograd卷积
2D Winograd可以由1D Winograd外推得到,因此为解决2D Winograd问题,首先要重温1D 卷积解决的问题。在此复述一遍:
假设一个卷积核尺寸为3的一维卷积,假设每次我们输出2个卷积点,则我们形式化此问题:F(2, 3)。
因为输出为2,卷积核大小为3,对应的输入点数应该为4,则此问题表述为:
输入:四维信号
卷积核: 三维向量
因此,此卷积的矩阵乘形式应为:
请记住这个形式是Winograd算法解决的问题,后续2D算法将化归为这个问题。
下面我们来定义2D 卷积问题,将1D卷积扩展一维:
假设一个卷积核尺寸为3x3的二维卷积,假设每次我们输出2x2个卷积点,则我们形式化此问题:F(2x2, 3x3)。
因为输出为2x2,卷积核大小为3x3,对应的输入点数应该为4x4,则此问题表述为:
输入:
卷积核:
因此,此卷积的矩阵乘形式应为:
从这个式子里,我们可以看到1D卷积的影子,这个影子在我们对矩阵作了分块后会更加明显。
再明显一点,我们写成分块矩阵乘的形式:
至此,我们对2D卷积推导出了跟1D形式一致的公式,只不过1D中的标量在2D中变成了小矩阵或者向量。
实操粉
对实操粉而言,到这个形式为止,已经可以写代码了。
由1D Winograd可知,我们可以将该式改写为Winograd形式, 如下:
其中:
注意,这四个M的计算又可以用一维的F(2, 3) Winograd来做,因此2D Winograd是个嵌套(nested)的算法。
理论粉
对一个有追求的理论粉来说,只是得到可以写程序的递归表达肯定是不完美的,他们还是希望有一个最终的解析表达的。其实也很简单,我们把上面的式子规整规整,使得输出成为一个标准的2x2矩阵,有:
可以写为:
依1D Winograd公式, 并结合各M的公式,有下式。
注意到像这些都是2维列向量,hadamard product和concat可以交换而不影响结果,因此:
至此证得。
参考文献
Going beyond Full Utilization: The Inside Scoop on Nervana’s Winograd Kernels
卷积神经网络中的Winograd快速卷积算法 注:本文关于2D Winograd的公式推导是错误的。
Winograd Convolution 推导 - 从1D到2D的更多相关文章
- 卷积神经网络中的Winograd快速卷积算法
目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog ...
- AES128加密-S盒和逆S盒构造推导及代码实现
文档引用了<密码编码学与网络安全--原理和实践>里边的推导过程,如有不妥,请与我联系修改. 文档<FIPS 197>高级加密标准AES,里边有个S盒构造,涉及到了数论和有限域的 ...
- 1D Blending
[1D Blending] BlendTree有类型之分,分为1D.2D.本文记录1D. 1D Blending blends the child motions according to a sin ...
- Notes on Convolutional Neural Networks
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...
- NumPy的详细教程
原文 http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...
- KCF目标跟踪方法分析与总结
KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. ...
- TensorFlow框架(4)之CNN卷积神经网络
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
- 论文阅读笔记十九:PIXEL DECONVOLUTIONAL NETWORKS(CVPR2017)
论文源址:https://arxiv.org/abs/1705.06820 tensorflow(github): https://github.com/HongyangGao/PixelDCN 基于 ...
- CNN 文本分类
谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的. 下面 ...
随机推荐
- Python - 100天从新手到大师
简单的说,Python是一个“优雅”.“明确”.“简单”的编程语言. 学习曲线低,非专业人士也能上手 开源系统,拥有强大的生态圈 解释型语言,完美的平台可移植性 支持面向对象和函数式编程 能够通过调用 ...
- 如何保护你的 Python 代码 (一)—— 现有加密方案
https://zhuanlan.zhihu.com/p/54296517 0 前言 去年11月在PyCon China 2018 杭州站分享了 Python 源码加密,讲述了如何通过修改 Pytho ...
- Arduino通过串口监视器收发数据
在串口监视器中发送数据,板子收到数据并打印出来. 不需要额外电路,但是板子必须连接电脑,Arduino IDE的串口监视器也需要被打开. 代码 /* 串口事件 当新的串口数据到来时,我们会将它添加到一 ...
- BZOJ 4459: [Jsoi2013]丢番图 数学推导
之前绝对做过几乎一模一样的题,现在做竟然忘了. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) f ...
- springboot与ssm的差异性
springboot简化了ssm的配置 将外部jar包改为内部pom.xml文件配置 同时 使用了多种注解来进行注解式的开发 [图1:springboot的一些依赖模块] 通过原springmvc机制 ...
- ABP 05 创建Model 以及 相应的增删改查
在core层 添加一个model,如图 2.在 EntityFrameworkCore 层的 DbContext 中添加 Menu 3.编译一下 准备把新增的Model迁移到数据库 打开 程序包管理器 ...
- 2019.10.1 qbxt模拟题
第一题 考虑树上\(DP\),f[i][j][0/1]表示以\(i\)为根的子树,入读为零点的个数为\(j\),点\(i\)的入度为\(0\)/不为\(0\)时的方案数 转移的时候考虑\(u\)的一个 ...
- 应用Synopsys Synplify 综合的注意一个问题
在Xilinx ISE中使用Synopsys Synplify综合时,注意约束文件*.ucf需在当前工程的文件夹下.不要将其它文件夹下的同名文件的约束当成当前工程下文件的约束.
- nginx之http反向代理多台服务器
Nginx http 反向代理高级应用 是Nginx可以基于ngx_http_upstream_module模块提供服务器分组转发.权重分配.状态监测.调度算法等高级功能. http upstream ...
- js中实现函数防抖跟函数节流
最近刚接触两个新概念函数防抖与函数节流,虽然这些内容网上可以搜到很多,大家都有自己的一套的理解方式,都写得很好, 而自己则想在理解的基础上自己把代码实现一遍,加深印象. 一.函数防抖 假如我们有这样的 ...