时序预测一直是比较重要的研究问题,在统计学中我们有各种的模型来解决时间序列问题,但是最近几年比较火的深度学习中也有能解决时序预测问题的方法,另外在深度学习领域中时序预测算法可以解决自然语言问题等。

在网上找到了    tensorflow 中   RNN    和    LSTM   算法预测  sin  曲线的代码,效果不错。

LSTM:

#encoding:UTF-8

import random
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn.python.ops import core_rnn
from tensorflow.contrib.rnn.python.ops import core_rnn_cell def build_data(n):
xs = []
ys = []
for i in range(0, 2000):
k = random.uniform(1, 50) x = [[np.sin(k + j)] for j in range(0, n)]
y = [np.sin(k + n)] # x[i] = sin(k + i) (i = 0, 1, ..., n-1)
# y[i] = sin(k + n)
xs.append(x)
ys.append(y) train_x = np.array(xs[0: 1500])
train_y = np.array(ys[0: 1500])
test_x = np.array(xs[1500:])
test_y = np.array(ys[1500:])
return (train_x, train_y, test_x, test_y) length = 10
time_step_size = length
vector_size = 1
batch_size = 10
test_size = 10 # build data
(train_x, train_y, test_x, test_y) = build_data(length)
print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) X = tf.placeholder("float", [None, length, vector_size])
Y = tf.placeholder("float", [None, 1]) # get lstm_size and output predicted value
W = tf.Variable(tf.random_normal([10, 1], stddev=0.01))
B = tf.Variable(tf.random_normal([1], stddev=0.01)) def seq_predict_model(X, w, b, time_step_size, vector_size):
# input X shape: [batch_size, time_step_size, vector_size]
# transpose X to [time_step_size, batch_size, vector_size]
X = tf.transpose(X, [1, 0, 2]) # reshape X to [time_step_size * batch_size, vector_size]
X = tf.reshape(X, [-1, vector_size]) # split X, array[time_step_size], shape: [batch_size, vector_size]
X = tf.split(X, time_step_size, 0) # LSTM model with state_size = 10
cell = core_rnn_cell.BasicLSTMCell(num_units=10,
forget_bias=1.0,
state_is_tuple=True)
outputs, _states = core_rnn.static_rnn(cell, X, dtype=tf.float32) # Linear activation
return tf.matmul(outputs[-1], w) + b, cell.state_size pred_y, _ = seq_predict_model(X, W, B, time_step_size, vector_size)
loss = tf.square(tf.subtract(Y, pred_y))
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) with tf.Session() as sess:
tf.global_variables_initializer().run() # train
for i in range(50):
# train
for end in range(batch_size, len(train_x), batch_size):
begin = end - batch_size
x_value = train_x[begin: end]
y_value = train_y[begin: end]
sess.run(train_op, feed_dict={X: x_value, Y: y_value}) # randomly select validation set from test set
test_indices = np.arange(len(test_x))
np.random.shuffle(test_indices)
test_indices = test_indices[0: test_size]
x_value = test_x[test_indices]
y_value = test_y[test_indices] # eval in validation set
val_loss = np.mean(sess.run(loss,
feed_dict={X: x_value, Y: y_value}))
print('Run %s' % i, val_loss) for b in range(0, len(test_x), test_size):
x_value = test_x[b: b + test_size]
y_value = test_y[b: b + test_size]
pred = sess.run(pred_y, feed_dict={X: x_value})
for i in range(len(pred)):
print(pred[i], y_value[i], pred[i] - y_value[i])

RNN :

import random

import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn.python.ops import core_rnn
from tensorflow.contrib.rnn.python.ops import core_rnn_cell def build_data(n):
xs = []
ys = []
for i in range(0, 2000):
k = random.uniform(1, 50) x = [[np.sin(k + j)] for j in range(0, n)]
y = [np.sin(k + n)] # x[i] = sin(k + i) (i = 0, 1, ..., n-1)
# y[i] = sin(k + n)
xs.append(x)
ys.append(y) train_x = np.array(xs[0: 1500])
train_y = np.array(ys[0: 1500])
test_x = np.array(xs[1500:])
test_y = np.array(ys[1500:])
return (train_x, train_y, test_x, test_y) length = 10
time_step_size = length
vector_size = 1
batch_size = 10
test_size = 10 # build data
(train_x, train_y, test_x, test_y) = build_data(length)
print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) X = tf.placeholder("float", [None, length, vector_size])
Y = tf.placeholder("float", [None, 1]) # get lstm_size and output predicted value
W = tf.Variable(tf.random_normal([10, 1], stddev=0.01))
B = tf.Variable(tf.random_normal([1], stddev=0.01)) def seq_predict_model(X, w, b, time_step_size, vector_size):
# input X shape: [batch_size, time_step_size, vector_size]
# transpose X to [time_step_size, batch_size, vector_size]
X = tf.transpose(X, [1, 0, 2])
# reshape X to [time_step_size * batch_size, vector_size]
X = tf.reshape(X, [-1, vector_size])
# split X, array[time_step_size], shape: [batch_size, vector_size]
X = tf.split(X, time_step_size, 0) cell = core_rnn_cell.BasicRNNCell(num_units=10)
initial_state = tf.zeros([batch_size, cell.state_size])
outputs, _states = core_rnn.static_rnn(cell, X, initial_state=initial_state) # Linear activation
return tf.matmul(outputs[-1], w) + b, cell.state_size pred_y, _ = seq_predict_model(X, W, B, time_step_size, vector_size)
loss = tf.square(tf.subtract(Y, pred_y))
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) with tf.Session() as sess:
tf.global_variables_initializer().run() # train
for i in range(50):
# train
for end in range(batch_size, len(train_x), batch_size):
begin = end - batch_size
x_value = train_x[begin: end]
y_value = train_y[begin: end]
sess.run(train_op, feed_dict={X: x_value, Y: y_value}) # randomly select validation set from test set
test_indices = np.arange(len(test_x))
np.random.shuffle(test_indices)
test_indices = test_indices[0: test_size]
x_value = test_x[test_indices]
y_value = test_y[test_indices] # eval in validation set
val_loss = np.mean(sess.run(loss,
feed_dict={X: x_value, Y: y_value}))
print('Run %s' % i, val_loss) for b in range(0, len(test_x), test_size):
x_value = test_x[b: b + test_size]
y_value = test_y[b: b + test_size]
pred = sess.run(pred_y, feed_dict={X: x_value})
for i in range(len(pred)):
print(pred[i], y_value[i], pred[i] - y_value[i])

-------------------------------------------------------------------

Tensorflow 循环神经网络 基本 RNN 和 LSTM 网络 拟合、预测sin曲线的更多相关文章

  1. 深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统

    基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2s ...

  2. 大话循环神经网络(RNN)

      在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果 ...

  3. Coursera Deep Learning笔记 序列模型(一)循环序列模型[RNN GRU LSTM]

    参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标 ...

  4. 【学习笔记】循环神经网络(RNN)

    前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然 ...

  5. TensorFlow(十一):递归神经网络(RNN与LSTM)

    RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序 ...

  6. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

  7. 深度学习之循环神经网络(RNN)

    循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元 ...

  8. TensorFlow——循环神经网络基本结构

    1.导入依赖包,初始化一些常量 import collections import numpy as np import tensorflow as tf TRAIN_DATA = "./d ...

  9. [深度学习]理解RNN, GRU, LSTM 网络

    Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义 ...

随机推荐

  1. SQL EXPLAIN优化详解

    使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是 如何处理你的SQL语句的.分析你的查询语句或是表结构的性能瓶颈.使用方式:Explain+SQL语句执行计划包含的信息: ...

  2. 均分纸牌(Noip2002)

    1320:[例6.2]均分纸牌(Noip2002) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 3537     通过数: 1839 [题目描述] 有n堆纸牌,编 ...

  3. java.lang.RuntimeException: org.springframework.dao.DuplicateKeyException:

    java.lang.RuntimeException: org.springframework.dao.DuplicateKeyException: ### Error updating databa ...

  4. 《你说对就队》第九次团队作业:【Beta】Scrum meeting 3

    <你说对就队>第九次团队作业:[Beta]Scrum meeting 3 项目 内容 这个作业属于哪个课程 [教师博客主页链接] 这个作业的要求在哪里 [作业链接地址] 团队名称 < ...

  5. 08 node.js 的使用

    创建包 目录结构 cmd   cd 到当前目录:  \ 执行 npm init //创建一个包 1 2. 3. 4.包的安装 npm install jquery --save npm install ...

  6. set的完整用法

    #include<bits/stdc++.h> using namespace std; set<int>s; int main () { //begin()--返回指向第一个 ...

  7. (Python) SOAP Web Service (HTTP POST)

    功能很强大,可惜只有试用 https://www.example-code.com/python/soap_web_service.asp

  8. 【JQuery】操作前端控件知识笔记

    一.jQuery操作复选框checkbox 1.设置选中.取消选中.获取被选中的值.判断是否选中等 注意:操作checked.disabled.selected属性,强制建议只用prop()方法!!, ...

  9. 如何在Processing中调用Windows应用程序

    Processing调用了exe就意味着失去了跨平台.调用的过程是,先得到当前的runtime,然后调用runtime的exec()方法,在exec()传入的是字符串参数,这个参数很重要,该有空格的地 ...

  10. 利用Synplify Pro 加时钟约束的问题

    可以改名称为"design.ucf"加成新约束. 在使用Xilinx ISE进行综合时,可以与Synplify Pro软件配合,实现较高的综合性能.但是,有时会出现如下问题: “E ...