DP方程是比较简单的,主要有三种:什么都不做、买入、卖出。

发现买入卖出都是$\Theta (n^3)$但是转移方程都是线性的,而且决策和当前的情况是分开的。

所以可以单调队列优化。

复杂度$\Theta(n^2)$

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define inf 1044266559
#define ll long long
#define mp make_pair int dp[2005][2005];
int que[2005],hd,tl;
struct Day{int ap,bp,as,bs;}a[2005];
int n,mxp,w;
int main()
{
scanf("%d%d%d",&n,&mxp,&w);
F(i,1,n) scanf("%d%d%d%d",&a[i].ap,&a[i].bp,&a[i].as,&a[i].bs);
memset(dp,-0x3f,sizeof dp); dp[0][0]=0;
F(i,1,n)
{
F(j,0,a[i].as) dp[i][j]=max(dp[i][j],-a[i].ap*j);
F(j,0,mxp) dp[i][j]=max(dp[i][j],dp[i-1][j]);
if (i-w-1>=0){
hd=1,tl=0;
F(j,0,mxp)
{
while (hd<=tl&&que[hd]<j-a[i].as) hd++;
while (hd<=tl&&dp[i-w-1][que[tl]]+que[tl]*a[i].ap<=dp[i-w-1][j]+j*a[i].ap) tl--;
que[++tl]=j;
dp[i][j]=max(dp[i][j],dp[i-w-1][que[hd]]-(j-que[hd])*a[i].ap);
}
hd=1;tl=0;
D(j,mxp,0){
while (hd<=tl&&que[hd]>min(j+a[i].bs,mxp)) hd++;
while (hd<=tl&&dp[i-w-1][que[tl]]+que[tl]*a[i].bp<=dp[i-w-1][j]+j*a[i].bp) tl--;
que[++tl]=j;
dp[i][j]=max(dp[i][j],dp[i-w-1][que[hd]]+(que[hd]-j)*a[i].bp);
}
}
}
printf("%d\n",dp[n][0]);
}

  

BZOJ 1855 [Scoi2010]股票交易 ——动态规划的更多相关文章

  1. ●BZOJ 1855 [Scoi2010]股票交易

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1855 题解: DP,单调队列优化.(好久没做 DP题,居然还意外地想出来了) 定义 dp[i ...

  2. bzoj 1855: [Scoi2010]股票交易

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

  3. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  4. BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)

    1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...

  5. 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569

    题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...

  6. [BZOJ 1855] 股票交易

    Link: BZOJ 1855 传送门 Solution: 比较明显的$dp$模型 令$dp[i][j]$为第$i$天持有$j$支股票时的最大利润 对其购买股票和售出股票分别$dp$,这里以购买为例: ...

  7. 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列

    [BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...

  8. 洛谷P2569 [SCOI2010]股票交易

    P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...

  9. [luogu] P2569 [SCOI2010]股票交易 (单调队列优化)

    P2569 [SCOI2010]股票交易 题目描述 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\te ...

随机推荐

  1. input禁止显示用户输入历史记录

    input标签中加上属性autocomplete="off"

  2. sort函数的使用

    此篇当作自己的笔记(水平太菜,这都一直没搞明白) sort()函数的用法1)sort函数包含在头文件<algroithm>中,还要结合using namespace std2)sort有三 ...

  3. QSting, QChar, char等的转换

    1,QChar 转换char: char QChar::toLatin1();char QChar::toAscii(); 2,Char转QChar: QChar(char ch); 3,QStrin ...

  4. Open Scene Graph:让VS支持不含后缀的头文件

    让VS支持不含后缀的头文件 看OSG源码时,会遇到不含后缀的头文件无定位信息的尴尬,很让人苦恼. 就是单击VS中“工具菜单栏”——>”选项(O)….”如下图所示: 菜单项,弹出选项对话框,单击“ ...

  5. CPP-基础:运算符重载详解

    1.运算符重载定义: C++中预定义的运算符的操作对象只能是基本数据类型.但实际上,对于许多用户自定义类型(例如类),也需要类似的运算操作.这时就必须在C++中重新定义这些运算符,赋予已有运算符新的功 ...

  6. 三. python面向对象

    第七章.面向对象基础 1.面向对象基础 类和对象: a. 创建类 class 类名: def 方法名(self,xxx): pass b. 创建对象 对象 = 类名() c. 通过对象执行方法 对象. ...

  7. java面试宝典第二弹

    arraylist和linklist的区别,hashmap和hashset的区别,常用的集合有哪些 一.基础内容 容器就是一种装其他各种对象的器皿.java.util包 容器:Set, List, M ...

  8. NOIP 成绩

    这道题中点是在小数上,因为成绩可能是:“95.5 87.7……”所以我们就要用:printf和scanf这样就可以控制小数了!!! code: #include<bits/stdc++.h> ...

  9. Git学习——撤销修改

    git checkout -- <file> 当你修改完一个工作区的文件后,使用git status查看当前的状态.其中有说明,接下来你可以git add <file> 去添加 ...

  10. Linux菜鸟起飞之路【三】Linux常用命令

    一.Linux命令的基本格式 命令 [选项] [参数] a)命令:就是告诉操作系统要做什么 b)选项:说明命令的运行方式,有的会改变命令的功能,选项通常以“-”开始 c)参数:说明命令的操作对象,如文 ...