概率DP+高斯消元

与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0。

一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的概率+$y$的概率$*y$到$x$的概率。

然后直接高斯消元即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 500005 double a[505][505],p[500005];
int h[maxn],fr[maxn],to[maxn],ne[maxn],en=0,n,m,du[maxn]; void add(int a,int b)
{to[en]=b;fr[en]=a;ne[en]=h[a];h[a]=en++;} void solve(int x)
{
a[x][x]=1; if (x==n) return;
for (int i=h[x];i>=0;i=ne[i])
{
if (to[i]==n) continue;
a[x][to[i]]-=1.0/du[to[i]];
}
} void gauss()
{
F(i,1,n)
{
int tmp=i;
while (!a[tmp][i]&&tmp<=n) tmp++;
if (tmp>n) continue;
F(j,i,n+1) swap(a[i][j],a[tmp][j]);
F(j,1,n) if (j!=i)
{
double t=a[j][i]/a[i][i];
F(k,1,n+1) a[j][k]-=t*a[i][k];
}
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
F(i,1,m)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);add(b,a);
du[a]++;du[b]++;
}
F(i,1,n) solve(i);
a[1][n+1]=1;
gauss();
F(i,1,n) a[i][i]=a[i][n+1]/a[i][i];
int tot=0;
for (int i=0;i<en;i+=2)
p[++tot]=a[fr[i]][fr[i]]/(du[fr[i]]*1.0)+a[to[i]][to[i]]/(du[to[i]]*1.0);
sort(p+1,p+tot+1);
double ans=0;
F(i,1,tot) ans+=p[i]*(m-i+1);
printf("%.3f\n",ans);
}

  

  

BZOJ 3143 [Hnoi2013]游走 ——概率DP的更多相关文章

  1. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  2. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  3. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  4. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  5. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  6. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  7. bzoj 3143: [Hnoi2013]游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. bzoj 3143 [Hnoi2013]游走【高斯消元+dp】

    参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...

  9. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

随机推荐

  1. 纯css实现div三列等高布局的最简单方法简化版/也可以多列

    使用正padding和负margin对冲实现多列布局方法 这种方法很简单,就是在所有列中使用正的上.下padding和负的上.下margin,并在所有列外面加上一个容器,并设置overflow:hid ...

  2. sysdig安装和使用介绍

    安装步骤1)安装资源库rpm --import https://s3.amazonaws.com/download.draios.com/DRAIOS-GPG-KEY.publiccurl -s -o ...

  3. (转)MyBatis框架的学习(五)——一对一关联映射和一对多关联映射

    http://blog.csdn.net/yerenyuan_pku/article/details/71894172 在实际开发中我们不可能只是对单表进行操作,必然要操作多表,本文就来讲解多表操作中 ...

  4. stringstream类的简介和用法

    一.简介 <sstream>类库定义了三种类:istringstream,ostringstream,stringstream.分别用来进行流的输入,流的输出,输入输出操作.在此演示str ...

  5. kitti raw data development kit的使用

    run_demoVelodyne.m使用:http://blog.csdn.net/qq_33801763/article/details/78959205   https://www.cnblogs ...

  6. Kernel Stack Overflow(转)

    0x00 漏洞代码 stack_smashing.c #include <linux/init.h> #include <linux/module.h> #include &l ...

  7. JdbcTemplate类对sql的操作使用

    <!--方式一: dbcp 数据源配置,在测试环境使用单连接 --> <bean id="dataSource" class="org.apache.c ...

  8. lru缓存测试类

    package demo.mytest; import java.io.Serializable;import java.util.LinkedHashMap;import java.util.con ...

  9. solr 单机模式搭建

    系统环境:centos 7 安装前准备 安装JDK环境 下载tomcat.solr安装包:solr下载地址:http://archive.apache.org/dist/lucene/solr/ 安装 ...

  10. 【DB_MySQL】查询语句中各子句的执行顺序

    1. FROM 指明查询来源 2. WHERE筛选元组 3. GROUP BY进行分组 4. HAVING 筛选分组 5. SELECT 投影出指定的字段列 6. ORDER BY 对结果集排序 7. ...