题目描述

上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂。这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭。由于每个人的口味(以及胃口)不同,所以他们要吃的菜各有不同,打饭所要花费的时间是因人而异的。另外每个人吃饭的速度也不尽相同,所以吃饭花费的时间也是可能有所不同的。

THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭。每个人打完饭后立刻开始吃,所有人都吃完饭后立刻集合去六教地下室进行下午的训练。

现在给定了每个人的打饭时间和吃饭时间,要求安排一种最佳的分队和排队方案使得所有人都吃完饭的时间尽量早。

假设THU ACM小组在时刻0到达十食堂,而且食堂里面没有其他吃饭的同学(只有打饭的师傅)。每个人必须而且只能被分在一个队伍里。两个窗口是并行操作互不影响的,而且每个人打饭的时间是和窗口无关的,打完饭之后立刻就开始吃饭,中间没有延迟。

现在给定N个人各自的打饭时间和吃饭时间,要求输出最佳方案下所有人吃完饭的时刻。


输入输出格式

输入格式:

第一行一个整数N,代表总共有N个人。

以下N行,每行两个整数 Ai,Bi。依次代表第i个人的打饭时间和吃饭时间。

输出格式:

一个整数T,代表所有人吃完饭的最早时刻。


输入输出样例

输入样例#1:

5

2 2

7 7

1 3

6 4

8 5

输出样例#1:

17


说明

所有输入数据均为不超过200的正整数。


Solution

考虑贪心.




给出贪心条件证明:

令当前,有两个人分别为 a,b,且满足 a 在 b 前为更优解.

排队和吃饭时间分别为:

\[d_a,c_a,d_b,c_b
\]

那么当前如果 a 在 b前,所需要花费的时间即为:

\[d_a+max(c_a,d_b+c_b)
\]

同理,如果 b 在 a 前,所需花费的时间为:

\[d_b+max(c_b,d_a+c_a)
\]

因为满足 a 在 b 前条件更优,即满足关系:

\[d_a+max(c_a,d_b+c_b)<d_b+max(c_b,d_a+c_a)
\]



以上贪心是一列队的做法,对于两列,考虑DP.
**定义状态:**
$$f[i][j]$$
表示到了第 i 个人,第1队**打饭时间** (不包括吃饭)为 j 时的最小集合时间.

转移方程

对于第 i 个人,它有两种情况.

  1. 去第一队

\[f[i+1][j+a[i+1].w]=min(f[i+1][j+a[i+1].d],max(j+a[i+1].d+a[i+1].c,f[i][j]));
\]

  1. 去第二队

\[f[i+1][j]=min(f[i+1][j],max(f[i][j],a[i+1].c+sum[i]-j+a[i+1].d));
\]

其中 sum 代表排序之后的排队前缀和.


#include<bits/stdc++.h>
using namespace std;
const int maxn=208;
struct sj{
int c;
int d;
}a[maxn];
bool cmp(sj s,sj j)
{return s.d+max(s.c,j.c+j.d)<j.d+max(j.c,s.c+s.d);} int n,sum[maxn];
int f[maxn][maxn*maxn];
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i].d>>a[i].c;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+a[i].d;
memset(f,127,sizeof(f));
int inf=f[0][0];
f[0][0]=0;
for(int i=0;i<n;i++)
for(int j=0;j<=sum[i];j++)
{
if(f[i][j]==inf)
continue;
f[i+1][j+a[i+1].d]=min(f[i+1][j+a[i+1].d],max(j+a[i+1].d+a[i+1].c,f[i][j]));
f[i+1][j]=min(f[i+1][j],max(f[i][j],a[i+1].c+sum[i]-j+a[i+1].d));
}
int ans=19260817;
for(int i=0;i<=sum[n];i++)
ans=min(ans,f[n][i]);
cout<<ans<<endl;
return 0;
}

[ZJOI2005]午餐 (贪心,动态规划)的更多相关文章

  1. Luogu2577 | [ZJOI2005]午餐 (贪心+DP)

    题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口)不同,所以他 ...

  2. luogu2577 [ZJOI2005] 午餐 贪心

    题目大意 THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭.每个人打完饭后立刻开始吃,所有人都吃 ...

  3. luogu 2577 [ZJOI2005]午餐 贪心+dp

    发现让 $b$ 更大的越靠前越优,然后依次决策将每个人分给哪个窗口. 令 $f[i][j]$ 表示考虑了前 $i$ 个人,且第一个窗口的总等待时间为 $j$ 的最小总时间. 然后转移一下就好了~ #i ...

  4. [ZJOI2005]午餐 (DP)

    [ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口 ...

  5. Luogu P2577 [ZJOI2005]午餐(dp)

    P2577 [ZJOI2005]午餐 题面 题目描述 上午的训练结束了, \(THU \ ACM\) 小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时 ...

  6. 【BZOJ1899】午餐(动态规划)

    [BZOJ1899]午餐(动态规划) 题面 BZOJ 题解 我太弱了 这种\(dp\)完全做不动.. 首先,感性理解一些 如果所有人都要早点走, 那么,吃饭时间长的就先吃 吃饭时间短的就晚点吃 所以, ...

  7. 【51Nod】1510 最小化序列 贪心+动态规划

    [题目]1510 最小化序列 [题意]给定长度为n的数组A和数字k,要求重排列数组从而最小化: \[ans=\sum_{i=1}^{n-k}|A_i-A_{i+k}|\] 输出最小的ans,\(n \ ...

  8. [洛谷P2577] [ZJOI2005]午餐

    洛谷题目链接:[ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的 ...

  9. 洛谷P2577 [ZJOI2005]午餐 打饭时间作为容量DP

    P2577 [ZJOI2005]午餐 )逼着自己做DP 题意: 有n个人打饭,每个人都有打饭时间和吃饭时间.有两个打饭窗口,问如何安排可以使得总用时最少. 思路: 1)可以发现吃饭时间最长的要先打饭. ...

随机推荐

  1. -[UPAInitViewController startAPPay] in libUPAPayPlugin.a(UPAInitViewController.o)

    问题 Undefined symbols for architecture arm64: "_PKPaymentNetworkChinaUnionPay", referenced ...

  2. HDU 4348 I - To the moon 可持续化

    队友套的可持续化线段树,徘徊在RE和MLE之间多发过的... 复用结点新的线段树平均要log2N个结点. 其实离线就好,按照时间顺序组织操作然后dfs. #include <iostream&g ...

  3. hydra 中文文档

    hydra(九头蛇)是一款开源的协议爆破工具,功能十分强大!!! 具体使用如下: -R   继续从上一次进度接着破解 -I 忽略已破解的文件进行破解 -S 采用SSL链接 -s 端口 指定非默认服务端 ...

  4. python之道04

    1.写代码,有如下列表,按照要求实现每一个功能 li = ["alex", "WuSir", "ritian", "barry&q ...

  5. kubernetes概念

    kubernetes blog cluster cluster是计算.存储.和网络资源的集合,kubernetes利用这些资源运行各种基于容器的应用. master master是cluster的大脑 ...

  6. c++ 计算彩票中奖概率

    操作方法: 输入两个数字,第一个数字是备选总数,第二个数字是选择总数,然后返回中将概率. 可以投注多次,结束的时候返回总的中将概率. #include <iostream> using n ...

  7. https原理解读

    参考:架构师必读!以图文的方式解锁 HTTPS原理,10分钟还原HTTPS真像! 对于消息安全的定义是:即使消息被中间人拦截到,中间人也没办法解读出其中的消息. 对称加密 要实现消息安全,首先想到的是 ...

  8. (转))iOS App上架AppStore 会遇到的坑

    iOS App上架AppStore 会遇到的坑   前言:非原创 文章摘自:http://zhuanlan.zhihu.com/100000PM/20010725 相信大家一定非常「深恶痛疾」AppS ...

  9. CodeForces 484B 数学 Maximum Value

    很有趣的一道题,题解戳这. #include <iostream> #include <cstdio> #include <cstring> #include &l ...

  10. ajax dataType

    dataType 类型:String 预期服务器返回的数据类型.如果不指定,jQuery 将自动根据 HTTP 包 MIME 信息来智能判断,比如 XML MIME 类型就被识别为 XML.在 1.4 ...