题目:

Description

对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数nm,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
 

Output

 
输出包含m行,依次为删除每个元素之前,逆序对的个数。

Sample Input

5 4
1
5
3
4
2
5
1
4
2

Sample Output

5
2
2
1

样例解释
(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。

HINT

N<=100000 M<=50000

Source

题解:

同样的一道三维偏序题,将删除看成倒着插入,从而得出:<插入时间,位置,大小>(<t,a,b>),对于一个组数<t,a,b>,找寻(t>t1,a>a1且b<b1)的数量加到对应的ans[t]中,注意最后将ans叠加起来;

另外要注意在排完t后,a要正着排序求一遍ans然后倒着排序一遍ans,否则ans会少加(想想为什么单纯地求逆序对不用这样)

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=1e5+;
struct node
{
int t,a,b;
}q[N],temp[N];
int n,m,tree[N],to[N],tag[N],tim;
long long ans[N];
long long Ans;
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
inline bool cmp(node a,node b)
{
return a.t<b.t;
}
inline bool comp(node a,node b)
{
return a.a<b.a;
}
inline void insert(int u,int v)
{
for(int i=u;i<=n;i+=(i&(-i)))
if(tag[i]!=tim) tag[i]=tim,tree[i]=v;
else tree[i]+=v;
}
inline bool comp2(node a,node b)
{
return a.a>b.a;
}
inline int query(int u)
{
int temp=;
for(int i=u;i;i-=(i&(-i)))
if(tag[i]!=tim) continue;
else temp+=tree[i];
return temp;
}
inline void solve1(int l,int r)
{
if(l==r) return;
int mid=(l+r)/;
solve1(l,mid),solve1(mid+,r);
int i=l,j=mid+,k=l;tim++;
while(i<=mid&&j<=r)
{
if(comp(q[i],q[j]))
{
insert(q[i].b,);
temp[k++]=q[i++];
}
else
{
ans[q[j].t]+=query(n)-query(q[j].b);
temp[k++]=q[j++];
}
}
while(i<=mid) temp[k++]=q[i++];
while(j<=r)
{
ans[q[j].t]+=query(n)-query(q[j].b);
temp[k++]=q[j++];
}
for(j=l;j<=r;j++) q[j]=temp[j]; }
inline void solve2(int l,int r)
{
if(l==r) return;
int mid=(l+r)/;
solve2(l,mid),solve2(mid+,r);
int i=l,j=mid+,k=l;tim++;
while(i<=mid&&j<=r)
{
if(comp(q[j],q[i]))
{
insert(q[i].b,);
temp[k++]=q[i++];
}
else
{
ans[q[j].t]+=query(q[j].b);
temp[k++]=q[j++];
}
}
while(i<=mid) temp[k++]=q[i++];
while(j<=r)
{
ans[q[j].t]+=query(q[j].b);
temp[k++]=q[j++];
}
for(j=l;j<=r;j++) q[j]=temp[j];
}
int main()
{
#ifndef ONLINE_JUDGE
//freopen("a.in","r",stdin);
#endif
n=R(),m=R();
for(int i=;i<=n;i++)
{
q[i].a=i,q[i].b=R();
to[q[i].b]=i;
}
int Time=n,a;
for(int i=;i<=m;i++)
{
a=R();q[to[a]].t=Time--;
}
for(int i=;i<=n;i++)
if(!q[i].t) q[i].t=Time--;
sort(q+,q+n+,cmp);
solve1(,n);
sort(q+,q+n+,cmp);
solve2(,n);
for(int i=;i<=n;i++)
Ans+=ans[i];
for(int i=n;i>n-m;i--)
printf("%lld\n",Ans),Ans-=ans[i];
return ;
}

刷题总结——动态逆序对(bzoj3295)的更多相关文章

  1. 【CQOI2011】动态逆序对 BZOJ3295

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  2. [bzoj3295][Cqoi2011]动态逆序对_主席树

    动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...

  3. bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对

    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...

  4. 【BZOJ3295】动态逆序对(线段树,树状数组)

    [BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...

  5. 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治

    [BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...

  6. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

  7. BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7465  Solved: 2662[Submit][Sta ...

  8. bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组

    [bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...

  9. bzoj3295 洛谷P3157、1393 动态逆序对——树套树

    题目:bzoj3295 https://www.lydsy.com/JudgeOnline/problem.php?id=3295 洛谷 P3157(同一道题) https://www.luogu.o ...

随机推荐

  1. 保存 http request 的数据到数据库表

    开发需求:把 http request 对象的数据保存到数据库中 第一步:编写 RequestInfoService 类,保存方法名是 saveRequestInfo // 保存request信息 p ...

  2. Linux SSH无密码login

    一:ssh原理图为: 1.就是为了让两个linux机器之间使用ssh不需要用户名和密码.采用了数字签名RSA或者DSA来完成这个操作 2.模型分析 假设 A (192.168.20.59)为客户机器, ...

  3. codevs 2919 选择题

    时间限制: 1 s  空间限制: 16000 KB  题目等级 : 黄金 Gold 题目描述 Description 某同学考试,在N*M的答题卡上写了A,B,C,D四种答案. 他做完了,又不能交,一 ...

  4. shell补充知识点

    一.cut(截取) 1.按字节截取(-b) 例:/etc/passwd文件截取 head -5 passwd | cut -b 1-4 ----->截取1-4的字节 head -5 passwd ...

  5. javase(14)_java基础增强

    一.Eclipse的使用 1.在eclipse下Java程序的编写和run as,debug as,及java运行环境的配置. 2.快捷键的配置,常用快捷键: •内容提示:Alt + / •快速修复: ...

  6. Nginx代理tcp端口实现负载均衡

    Nginx代理tcp端口实现负载均衡 1.修改配置文件 vi /etc/nginx/nginx.conf 添加如下配置: stream { ###XXX upstream notify {   has ...

  7. java在线聊天项目 使用SWT快速制作登录窗口,可视化窗口Design 更换窗口默认皮肤(切换Swing自带的几种皮肤如矩形带圆角)

    SWT成功激活后 new一个JDialog 调整到Design视图 默认的视图模式是BorderLayout,无论你怎么拖拽,只能放到东西南北中的位置上 所以,我们把视图模式调整为AbsoluteLa ...

  8. java在线聊天项目0.5版 解决客户端向服务器端发送信息时只能发送一次问题 OutputStreamWriter DataOutputStream socket.getOutputStream()

    没有解决问题之前客户端代码: package com.swift; import java.awt.BorderLayout; import java.awt.Color; import java.a ...

  9. Fortran学习记录3(选择语句)

    流程控制语句 if的基本用法 if-else语句块 多重判断if-elseif语句 if语句嵌套 Select case语句 Goto语句 PAUSE CONTINUE STOP 流程控制语句 if的 ...

  10. PHP 线上项目 无法操作

    部署到线上的项目,http 环境没有问题,首页展示没有问题,但是跳转页面展示到了本地, 解决办法 : 更改文件夹所属用户 chown -R apache:apache html