题目链接:

Fire-Control System

Time Limit: 12000/5000 MS (Java/Others)   

 Memory Limit: 32768/32768 K (Java/Others)

Problem Description
A new mighty weapon has just been developed, which is so powerful that it can attack a sector of indefinite size, as long as the center of the circle containing the sector is the location of the weapon. We are interested in developing a fire-control system that calculates firing-solutions automatically.
The following example gives an example of a firing solution:
Figure 1

Here the firing region is the sector "ABC" that covers six points: A, B, C, D, E, H. You may further assume that the weapon is always located at point (0, 0), no targets will be on the point (0, 0) and the coordinates of the targets will be distinct.
A firing solution is called effective if and only if it covers a minimum of K points
out of N given points (targets) on the two-dimensional Cartesian plane. Furthermore,since the cost of a particular fire solution is in direct proportion to the size of the area it covers, a firing could be quite costly; thus we are only interested in the optimal firing solution with the minimum cost.
 
Input
There are multiple test cases in the input file.
Each test case starts with two non-negative integers, N and K
(1 ≤ N ≤ 5000 , K ≤ N ), followed by N lines each containing two integers, X, and Y, describing the distinct location of one target. It is guaranteed that the absolute value of any integer does not exceed 1000.
Two successive test cases are separated by a blank line. A case with N = 0 and K = 0 indicates the end of the input file, and should not be processed by your program.
 
Output
For each test case, please print the required size (to two decimal places), in the
format as indicated in the sample output.
 
Sample Input
 
3 1
0 1
1 0
-5 -6
3 2
0 2
2 0
-5 -6
0 0
 
Sample Output
 
Case #1: 0.00
Case #2: 3.14

题意:

给n个点,找出一个圆心在(0,0)的扇形,至少覆盖k个点,使得扇形的面积最小;

思路:

枚举半径r,找到与原点距离小于等于r的点,这些点极角排序后看覆盖k个点的面积,更新最小值就可以,在k==0的地方wa了几发;

AC代码:

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <cstring>
  4. #include <algorithm>
  5. #include <cmath>
  6. #include <map>
  7.  
  8. using namespace std;
  9.  
  10. #define For(i,j,n) for(int i=j;i<=n;i++)
  11. #define mst(ss,b) memset(ss,b,sizeof(ss));
  12.  
  13. typedef long long LL;
  14.  
  15. template<class T> void read(T&num) {
  16. char CH; bool F=false;
  17. for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
  18. for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
  19. F && (num=-num);
  20. }
  21. int stk[70], tp;
  22. template<class T> inline void print(T p) {
  23. if(!p) { puts("0"); return; }
  24. while(p) stk[++ tp] = p%10, p/=10;
  25. while(tp) putchar(stk[tp--] + '0');
  26. putchar('\n');
  27. }
  28.  
  29. const LL mod=998244353;
  30. const double PI=acos(-1.0);
  31. const LL inf=1e18;
  32. const int N=1e4+10;
  33. const int maxn=1e3+10;
  34. const double eps=1e-4;
  35.  
  36. struct node
  37. {
  38. int x,y;
  39. double dis,ang;
  40. }po[N];
  41. int temp[N];
  42. int cmp(node a,node b)
  43. {
  44. if(a.ang<b.ang)return 1;
  45. return 0;
  46. }
  47. int main()
  48. {
  49. int Case=0;
  50. while(1)
  51. {
  52. int n,k;
  53. read(n);read(k);
  54. if(!n&&!k)break;
  55. printf("Case #%d: ",++Case);
  56. For(i,1,n)
  57. {
  58. read(po[i].x),read(po[i].y);
  59. po[i].ang=atan2(po[i].y,po[i].x);
  60. po[i].dis=sqrt(po[i].x*po[i].x+po[i].y*po[i].y);
  61. }
  62. sort(po+1,po+n+1,cmp);
  63. For(i,1,n)
  64. {
  65. po[i+n]=po[i];
  66. po[i+n].ang+=2*PI;
  67. }
  68. double ans=1e18;
  69. if(k==0)ans=0;
  70. For(i,1,n)
  71. {
  72. double r=po[i].dis;
  73. int cnt=0;
  74. For(j,1,2*n)if(po[j].dis<=po[i].dis+eps)temp[++cnt]=j;
  75. For(j,1,cnt)
  76. {
  77. if(temp[j]>n||j+k-1>cnt||temp[j+k-1]-temp[j]>=n)continue;
  78. double angle=po[temp[j+k-1]].ang-po[temp[j]].ang;
  79. ans=min(ans,angle*r*r/2);
  80. }
  81. }
  82. printf("%.2lf\n",ans);
  83. }
  84. return 0;
  85. }

  

LA-4356&&hdu-2469 (极角排序+扫描线)的更多相关文章

  1. POJ 2280 Amphiphilic Carbon Molecules 极角排序 + 扫描线

    从TLE的暴力枚举 到 13313MS的扫描线  再到 1297MS的简化后的扫描线,简直感觉要爽翻啦.然后满怀欣喜的去HDU交了一下,直接又回到了TLE.....泪流满面 虽说HDU的时限是2000 ...

  2. 【极角排序、扫描线】UVa 1606 - Amphiphilic Carbon Molecules(两亲性分子)

    Shanghai Hypercomputers, the world's largest computer chip manufacturer, has invented a new class of ...

  3. HDU 5738 Eureka(极角排序)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5738 [题目大意] 给出平面中一些点,在同一直线的点可以划分为一个集合,问可以组成多少包含元素不少 ...

  4. 【极角排序+双指针线性扫】2017多校训练七 HDU 6127 Hard challenge

    acm.hdu.edu.cn/showproblem.php?pid=6127 [题意] 给定平面直角坐标系中的n个点,这n个点每个点都有一个点权 这n个点两两可以连乘一条线段,定义每条线段的权值为线 ...

  5. HDU Always Cook Mushroom (极角排序+树状数组)

    Problem Description Matt has a company, Always Cook Mushroom (ACM), which produces high-quality mush ...

  6. 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)

    题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...

  7. 【极角排序】【扫描线】hdu6127 Hard challenge

    平面上n个点,每个点带权,任意两点间都有连线,连线的权值为两端点权值之积.没有两点连线过原点.让你画一条过原点直线,把平面分成两部分,使得直线穿过的连线的权值和最大. 就把点极角排序后,扫过去,一侧的 ...

  8. LA 4064 (计数 极角排序) Magnetic Train Tracks

    这个题和UVa11529很相似. 枚举一个中心点,然后按极角排序,统计以这个点为钝角的三角形的个数,然后用C(n, 3)减去就是答案. 另外遇到直角三角形的情况很是蛋疼,可以用一个eps,不嫌麻烦的话 ...

  9. poj2280--Amphiphilic Carbon Molecules(扫描线+极角排序+转换坐标)

    题目链接:id=2280">点击打开链接 题目大意:给出n个点的坐标.每一个点有一个值0或者1,如今有一个隔板(无限长)去分开着n个点,一側统计0的个数,一側统计1的个数,假设点在板上 ...

随机推荐

  1. hdu4888 多校B 最大流以及最大流唯一判断+输出方案

    题意,给一个矩阵,告诉你每行和.每列和,并且限制所填数不大于k,问矩阵是否唯一. 经典建图不说了,第一次遇到判断最大流唯一性的,学习了:用dfs来判断残网中是否还存在环,若存在,则表明绕这个环走一圈, ...

  2. hdu1853/ hdu 3488 有向图,取k个圈覆盖所有点一次//费用流

    哎╮(╯▽╰)╭,这是费用流基础题型,拆点,建二分图,跑最小费用最大流即可.若最大流为n,则说明是最大匹配为n,所有点都参与,每个点的入度和出度又是1,所以就是环. 弱菜还需努力! #include& ...

  3. openSUSE Leap 15.0 初始配置

    添加源: # 禁用原有软件源 sudo zypper mr -da # 添加阿里镜像源 sudo zypper ar -fc https://mirrors.aliyun.com/opensuse/d ...

  4. CODEVS_2144 砝码称重 2 折半搜索+二分查找+哈希

    #include<iostream> #include<algorithm> #include<cstring> #include<map> #incl ...

  5. IntelliJ IDEA 使用的问题总结

     第一个问题:idea 无法创建springboot的项目     1. 点击IDEA setting之后,找到Http Proxy 选择Atuo-detect proxy settings 之后点击 ...

  6. 《Java虚拟机原理图解》1.5、 class文件中的方法表集合--method方法在class文件中是怎样组织的

    0. 前言 了解JVM虚拟机原理是每一个Java程序员修炼的必经之路.但是由于JVM虚拟机中有很多的东西讲述的比较宽泛,在当前接触到的关于JVM虚拟机原理的教程或者博客中,绝大部分都是充斥的文字性的描 ...

  7. linux 系统命令----修改主机名

    1. hostname    ***** 2.修改/etc/sysconfig/network 3./etc/hosts 最后第三步没有必要!

  8. GeoServer发布Heatmap

    转自原文 GeoServer发布Heatmap 百度等热力图是使用开源的heatmap.js做的,但是这种解决方案的缺陷是: 1 数据量大的话,从前端通过后台查询比较费时,比如arcserver默认设 ...

  9. 【mac】mac上安装JDK

    安装步骤就是在Oracle官网下载你想要的JDK版本下载,下载的时候同意协议即可 这里就给出jdk安装的位置 还有一点要注意的是,在指定JVM的位置的时候,需要指定到home目录下

  10. Word2vector原理

    词向量: 用一个向量的形式表示一个词 词向量的一种表示方式是one-hot的表示形式:首先,统计出语料中的所有词汇,然后对每个词汇编号,针对每个词建立V维的向量,向量的每个维度表示一个词,所以,对应编 ...