Network
Time Limit: 1000MS   Memory Limit: 30000K
         Special Judge

http://poj.org/problem?id=1861

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network,
each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 

Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one
because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about
possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot
be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding
cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion

我承认是无聊,在百度上找最小生成树的专题(链接),然后第一个就是这个题,,嘿嘿,虽然刚学,但对于这种不是很复杂的生成树的题,我还是有信心的,,只不过看样例看了一会,如果是最小生成树的话那么题面输出.........看了看讨论区证实了我的猜想

AC代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=20000+10;
int n,m,f[1001];
struct node
{
int u,v,w,vis;
} a[N];
int cmp(node a ,node b)
{
return a.w<b.w;
}
int find(int x)
{
return f[x]==-1?x:<span style="color:#ff0000;">x=find(f[x])</span>;//这里好容易就出错的;
}
void ks(int n)
{
memset(f,-1,sizeof(f));
sort(a,a+m,cmp);
int ans=-1,cot=0;
for(int i=0; i<m; i++)
{
int u=find(a[i].u);
int v=find(a[i].v);
if(u!=v)
{
f[u]=v;
a[i].vis=1;//标记;
cot++;
ans=max(ans,a[i].w);//求出最长边;
}
}
printf("%d\n%d\n",ans,cot);
for(int i=0; i<m; i++)
if(a[i].vis)
printf("%d %d\n",a[i].u,a[i].v);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof(a));
for(int i=0; i<m; i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
ks(n);
}
return 0;
}

POJ-1861,Network,最小生成树水题,,注意题面输出有问题,不必理会~~的更多相关文章

  1. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. poj~1236 Network of Schools 强连通入门题

    一些学校连接到计算机网络.这些学校之间已经达成了协议: 每所学校都有一份分发软件的学校名单("接收学校"). 请注意,如果B在学校A的分发名单中,则A不一定出现在学校B的名单中您需 ...

  4. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  5. POJ 1861 Network

    题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...

  6. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  7. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  8. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  9. POJ 1751 Highways(最小生成树Prim普里姆,输出边)

    题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...

随机推荐

  1. SPRING-BOOT系列之简介

    来自:51CTO的学习视频,本博客作为一个知识点记录以及代码验证 spring boot 特点 1. 为基于spring的开发提供更快的入门体验 2. 创建可以独立运行的spring应用 3. 直接嵌 ...

  2. SPRING-BOOT系列之Spring4快速入门

    上节 : spring boot简介 接着上章节的spring boot简介,我们会发现boot是基于spring的,其中最重要的就是spring容器了.那么本章着重介绍spring容器装配自定义be ...

  3. port 22: Connection refused

    issue: os>ssh 196.168.27.90ssh: connect to host 196.168.27.90 port 22: Connection refused solutio ...

  4. RHEL 6.5----apr-util1.6执行make时报错

    报错信息 ]: Entering directory `/usr/local/src/apr-util-' /bin//build-/libtool --silent --mode=compile / ...

  5. SonarQube+Svn+Jenkins环境搭建----问题总结

    1.配置SVN后提示unable to access to repository,原因是使用的账户没有访问svn的权限,创建新的用户即可.注意新的用户,用户名,密码要跟svn上的权限一致.     创 ...

  6. scala 通过jdbc访问mysql

    scala是jvm语言,运行在jvm之上 我们知道jdbc是java访问数据库的技术,那么scala能不能通过jdbc操作数据库呢,答案是可以的 部分代码如下: /** * 获取连接 */ priva ...

  7. prevent to do sth 与 prevent sb (from) doing 用法

    prevent to do sth 如: Do not water in before making a turn every time 9 days, make wilting of its bra ...

  8. 手写MVVM框架 之vue双向数据绑定原理剖析

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. elasticsearch httpclient认证机制

    最近公司单位搬迁,所有的服务都停止了,我负责的elasticsearch不知道怎么回事,一直不能运行呢,因此,我一直在负责调试工作.经过两天的调试工作,我发现新的服务器增加了httpclient认证机 ...

  10. ECharts是我接触过的最优秀的可视化工具,也是进步最快的软件,希望它早日成为世界级的开源项目。

    ECharts的广泛网址: http://echarts.baidu.com/doc/example.html 零编程玩转图表: http://tushuo.baidu.com/?qq-pf-to=p ...