Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3、Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2
第三章Convolution Neural Network (卷积神经网络)
2基础及源代码解析
2.1 Convolution Neural Network卷积神经网络基础知识
1)基础知识:
自行google,百度。基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确;
能把细节说清楚了讲明确了。能够參照以下2个文章,前提条件是你得先要有基础性的了解。
2)重点參照:
http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html
http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html
2.2 Deep Learning CNN源代码解析
2.2.1 CNN代码结构
CNN源代码主要包含:CNN,CNNModel两个类,源代码结构例如以下:
CNN结构:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
CNNModel结构:
2.2.2 CNN训练过程
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
2.2.3 CNN解析
(1) CNNLayers
/**
* types:网络层类别
* outputmaps:特征map数量
* kernelsize:卷积核k大小
* k: 卷积核
* b: 偏置
* dk:
卷积核的偏导
* db:
偏置的偏导
* scale: pooling大小
*/
caseclassCNNLayers(
types:String,
outputmaps:Double,
kernelsize:Double,
scale:Double,
k:Array[Array[BDM[Double]]],
b: Array[Double],
dk:Array[Array[BDM[Double]]],
db:Array[Double])extends Serializable
CNNLayers:自己定义数据类型。存储网络每一层的參数信息。
(2) CnnSetup
卷积神经网络參数初始化。依据參数逐层构建CNN网络。
/** 卷积神经网络层參数初始化. */
defCnnSetup: (Array[CNNLayers], BDM[Double], BDM[Double], Double) = {
varinputmaps1=1.0
varmapsize1=mapsize
varconfinit= ArrayBuffer[CNNLayers]()
to)
{// layer
valtype1=types(l)
valoutputmap1=outputmaps(l)
valkernelsize1=kernelsize(l)
valscale1=scale(l)
vallayersconf=if(type1=="s"){//每一层參数初始化
mapsize1 =mapsize1 /scale1
valb1 = Array.fill(inputmaps1.toInt)(0.0)
,)))
new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki,b1,ki,b1)
} elseif(type1=="c"){
mapsize1 =mapsize1 -kernelsize1+1.0
)
)
valki = ArrayBuffer[Array[BDM[Double]]]()
to)
{// input map
valkj = ArrayBuffer[BDM[Double]]()
to)
{// output map
valkk = (BDM.rand[Double](kernelsize1.toInt,kernelsize1.toInt)-0.5)*2.0*
sqrt(6.0/ (fan_in+fan_out))
kj +=kk
}
ki +=kj.toArray
}
valb1 = Array.fill(outputmap1.toInt)(0.0)
inputmaps1 =outputmap1
new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki.toArray,b1,ki.toArray,b1)
} else{
,)))
valb1 = Array(0.0)
new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki,b1,ki,b1)
}
confinit+=layersconf
}
,)
* ,) *inputmaps1
)
valffW= (BDM.rand[Double](onum,fvnum.toInt)-0.5)*2.0*
sqrt(6.0/ (onum+fvnum))
(confinit.toArray,ffb,ffW,alpha)
}
(3) expand
克罗内克积方法。
/**
* 克罗内克积
*
*/
defexpand(a: BDM[Double],s: Array[Int]): BDM[Double]= {
// val a = BDM((1.0, 2.0), (3.0,4.0), (5.0, 6.0))
// val s = Array(3, 2)
valsa = Array(a.rows, a.cols)
vartt =new Array[Array[Int]](sa.length)
to
by -) {
varh =BDV.zeros[Int](sa(ii) * s(ii))
to
by s(
tt(ii) = Accumulate(h).data
}
).length,).length)
tob.rows
-) {
tob.cols
-) {
)(j1)
-, )()
}
}
b
}
(4) convn
卷积计算方法。
/**
* convn卷积计算
*/
defconvn(m0: BDM[Double],k0: BDM[Double],shape: String): BDM[Double]=
{
//val m0 = BDM((1.0, 1.0, 1.0, 1.0),(0.0, 0.0, 1.0, 1.0), (0.0, 1.0, 1.0, 0.0), (0.0, 1.0, 1.0, 0.0))
//val k0 = BDM((1.0, 1.0), (0.0,1.0))
//val m0 = BDM((1.0, 1.0, 1.0),(1.0, 1.0, 1.0), (1.0, 1.0, 1.0))
//val k0 = BDM((1.0, 2.0, 3.0),(4.0, 5.0, 6.0), (7.0, 8.0, 9.0))
valout1= shapematch{
case"valid"=>
valm1 = m0
valk1 = k0.t
valrow1 =m1.rows -k1.rows
+
valcol1 =m1.cols -k1.cols
+
varm2 = BDM.zeros[Double](row1,col1)
to)
{
to)
{
valr1 =i
valr2 =r1 +k1.rows
-
valc1 =j
valc2 =c1 +k1.cols
-
valmi =m1(r1 tor2,c1
toc2)
m2(i,j) = (mi :*k1).sum
}
}
m2
case"full"=>
* (k0.), m0. * (k0.))
to m0.)
{
to m0.)
{
) +)
+j) = m0(i,j)
}
}
valk1 = Rot90(Rot90(k0))
valrow1 =m1.rows -k1.rows
+
valcol1 =m1.cols -k1.cols
+
varm2 = BDM.zeros[Double](row1,col1)
to)
{
to)
{
valr1 =i
valr2 =r1 +k1.rows
-
valc1 =j
valc2 =c1 +k1.cols
-
valmi =m1(r1 tor2,c1
toc2)
m2(i,j) = (mi :*k1).sum
}
}
m2
}
out1
}
(5) CNNtrain
对神经网络进行训练。
输入參数:train_d 训练RDD数据。opts训练參数。
输出:CNNModel,训练模型。
/**
* 执行卷积神经网络算法.
*/
defCNNtrain(train_d: RDD[(BDM[Double], BDM[Double])], opts: Array[Double]):CNNModel = {
valsc =train_d.sparkContext
varinitStartTime= System.currentTimeMillis()
varinitEndTime= System.currentTimeMillis()
// 參数初始化配置
var(cnn_layers,cnn_ffb,cnn_ffW,cnn_alpha)=
CnnSetup
// 样本数据划分:训练数据、交叉检验数据
)
valsplitW1= Array(1.0-validation,validation)
valtrain_split1= train_d.randomSplit(splitW1, System.nanoTime())
)
)
// m:训练样本的数量
valm =train_t.count
// 计算batch的数量
).toInt
).toInt
valnumbatches= (m /batchsize).toInt
varrL = Array.fill(numepochs *numbatches.toInt)(0.0)
// numepochs是循环的次数
tonumepochs) {
initStartTime= System.currentTimeMillis()
valsplitW2= Array.fill(numbatches)(1.0 /numbatches)
//
依据分组权重。随机划分每组样本数据
tonumbatches) {
//
权重
valbc_cnn_layers =sc.broadcast(cnn_layers)
valbc_cnn_ffb =sc.broadcast(cnn_ffb)
valbc_cnn_ffW =sc.broadcast(cnn_ffW)
//
样本划分
valtrain_split2 =train_t.randomSplit(splitW2, System.nanoTime())
)
// CNNff是进行前向传播
// net =cnnff(net, batch_x);
valtrain_cnnff = CNN.CNNff(batch_xy1,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)
// CNNbp是后向传播
// net =cnnbp(net, batch_y);
valtrain_cnnbp = CNN.CNNbp(train_cnnff,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)
//
权重更新
// net =cnnapplygrads(net,opts);
valtrain_nnapplygrads = CNN.CNNapplygrads(train_cnnbp,bc_cnn_ffb,bc_cnn_ffW,cnn_alpha)
cnn_ffW =train_nnapplygrads._1
cnn_ffb =train_nnapplygrads._2
cnn_layers =train_nnapplygrads._3
// error and loss
//
输出误差计算
// net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);
valrdd_loss1 =train_cnnbp._1.map(f => f._5)
val (loss2,counte)=rdd_loss1.treeAggregate((0.0,0L))(
seqOp = (c, v) => {
// c: (e, count), v: (m)
vale1 = c._1
vale2 = (v :* v).sum
valesum =e1 +e2
()
},
combOp = (c1, c2) => {
// c: (e, count)
vale1 = c1._1
vale2 = c2._1
valesum =e1 +e2
(esum, c1._2 + c2._2)
})
valLoss = (loss2/counte.toDouble)*0.5
) {
rL(n) =Loss
} else {
)
+0.01 *Loss
}
}
initEndTime= System.currentTimeMillis()
//
打印输出结果
printf("epoch: numepochs = %d , Took = %dseconds; batch train mse = %f.\n",i,
scala.math.ceil(().toLong,))
}
// 计算训练误差及交叉检验误差
// Full-batch trainmse
varloss_train_e=0.0
varloss_val_e=0.0
loss_train_e= CNN.CNNeval(train_t,sc.broadcast(cnn_layers),sc.broadcast(cnn_ffb),sc.broadcast(cnn_ffW))
)loss_val_e = CNN.CNNeval(train_v,sc.broadcast(cnn_layers),sc.broadcast(cnn_ffb),sc.broadcast(cnn_ffW))
printf("epoch: Full-batch train mse = %f, valmse = %f.\n",loss_train_e,loss_val_e)
newCNNModel(cnn_layers,cnn_ffW,cnn_ffb)
}
(6) CNNff
前向传播计算,计算每层输出。从输入层->隐含层->输出层。计算每一层每个节点的输出值。
输入參数:
batch_xy1 样本数据
bc_cnn_layers 每层的參数
bc_cnn_ffb 偏置參数
bc_cnn_ffW 权重參数
输出:
每一层的计算结果。
/**
* cnnff是进行前向传播
* 计算神经网络中的每一个节点的输出值;
*/
defCNNff(
batch_xy1: RDD[(BDM[Double], BDM[Double])],
bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]):RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double])] = {
层:a(1)=[x]
valtrain_data1= batch_xy1.map { f =>
vallable= f._1
valfeatures= f._2
valnna1= Array(features)
valnna= ArrayBuffer[Array[BDM[Double]]]()
nna+=nna1
(lable,nna)
}
至n-1层计算
valtrain_data2=train_data1.map{ f =>
vallable= f._1
valnn_a= f._2
varinputmaps1=1.0
valn =bc_cnn_layers.value.length
// for each layer
to)
{
valtype1 = bc_cnn_layers.value(l).types
valoutputmap1 = bc_cnn_layers.value(l).outputmaps
valkernelsize1 = bc_cnn_layers.value(l).kernelsize
valscale1 = bc_cnn_layers.value(l).scale
valk1 = bc_cnn_layers.value(l).k
valb1 = bc_cnn_layers.value(l).b
valnna1 = ArrayBuffer[BDM[Double]]()
if (type1 =="c"){
to)
{// output map
// createtemp output map
)().rows
-, )().cols -kernelsize1.toInt
+ )
to)
{// input map
// convolve with corresponding kernel and add to temp outputmap
// z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j},'valid');
z = )(i),k1(i)(j),"valid")
}
// add bias, pass through nonlinearity
// net.layers{l}.a{j} =sigm(z + net.layers{l}.b{j})
valnna0 = sigm(z +b1(j))
nna1 +=nna0
}
nn_a +=nna1.toArray
inputmaps1 =outputmap1
} elseif (type1=="s"){
to)
{
// z =convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) /(net.layers{l}.scale ^ 2), 'valid'); replace with variable
// net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 :net.layers{l}.scale : end, :);
)(j),
BDM.ones[Double](scale1.toInt,scale1.toInt) / (scale1 *scale1),"valid")
to - byscale1.toInt).t +0.0
to - byscale1.toInt).t +0.0
valnna0 =zs2
nna1 +=nna0
}
nn_a +=nna1.toArray
}
}
// concatenate all end layer feature mapsinto vector
valnn_fv1= ArrayBuffer[Double]()
tonn_a(n
-).length -) {
)(j).data
}
,nn_fv1.toArray)
// feedforward into outputperceptrons
// net.o =sigm(net.ffW * net.fv +repmat(net.ffb,1, size(net.fv, 2)));
valnn_o= sigm(bc_cnn_ffW.value *nn_fv + bc_cnn_ffb.value)
(lable,nn_a.toArray,nn_fv,nn_o)
}
train_data2
}
(7) CNNbp
后向传播计算。计算每层导数,输出层->隐含层->输入层。计算每一个节点的偏导数。也即误差反向传播。
输入參数:
train_cnnff 前向计算结果
bc_cnn_layers 每层的參数
bc_cnn_ffb 偏置參数
bc_cnn_ffW 权重參数
输出:
每一层的偏导数计算结果。
/**
* CNNbp是后向传播
* 计算权重的平均偏导数
*/
defCNNbp(
train_cnnff: RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double],BDM[Double])],
bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]):(RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double],BDM[Double], BDM[Double], BDM[Double], Array[Array[BDM[Double]]])],BDM[Double], BDM[Double],
Array[CNNLayers]) = {
// error : net.e = net.o - y
valn =bc_cnn_layers.value.length
valtrain_data3= train_cnnff.map { f =>
valnn_e= f._4 - f._1
(f._1, f._2, f._3, f._4,nn_e)
}
// backprop deltas
// 输出层的灵敏度或者残差
// net.od = net.e .* (net.o .* (1 - net.o))
// net.fvd = (net.ffW' * net.od)
valtrain_data4=train_data3.map{ f =>
valnn_e= f._5
valnn_o= f._4
valnn_fv= f._3
valnn_od=nn_e:* (nn_o:* (1.0-nn_o))
).types
=="c") {
// net.fvd = net.fvd .* (net.fv .* (1 - net.fv));
valnn_fvd1 = bc_cnn_ffW.value.t *nn_od
valnn_fvd2 =nn_fvd1:* (nn_fv:* (1.0-nn_fv))
nn_fvd2
} else{
valnn_fvd1 = bc_cnn_ffW.value.t *nn_od
nn_fvd1
}
(f._1, f._2, f._3, f._4, f._5,nn_od,nn_fvd)
}
// reshape feature vector deltas intooutput map style
valsa1=train_data4.map(f=> f._2(n
-)()).take()().rows
valsa2=train_data4.map(f=> f._2(n
-)()).take()().cols
valfvnum=sa1*sa2
valtrain_data5=train_data4.map{ f =>
valnn_a= f._2
valnn_fvd= f._7
valnn_od= f._6
valnn_fv= f._3
varnnd=newArray[Array[BDM[Double]]](n)
valnnd1= ArrayBuffer[BDM[Double]]()
tonn_a(n
-).length -) {
valtmp1 =nn_fvd((j *fvnum)
to (() *),)
valtmp2 =newBDM(sa1,sa2,tmp1.data)
nnd1 +=tmp2
}
) =nnd1.toArray
) to
by -) {
valtype1 = bc_cnn_layers.value(l).types
varnnd2 = ArrayBuffer[BDM[Double]]()
if (type1 =="c"){
tonn_a(l).length
-) {
valtmp_a =nn_a(l)(j)
)(j)
).scale.toInt
valtmp1 =tmp_a:* (1.0-tmp_a)
valtmp2 = expand(tmp_d,Array(tmp_scale,tmp_scale))/
(tmp_scale.toDouble*tmp_scale)
nnd2 += (tmp1 :*tmp2)
}
} elseif (type1=="s"){
tonn_a(l).length
-) {
).).cols)
tonn_a(l
+).length -) {
// z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l +1}.k{i}{j}), 'full');
z = )(j),Rot90(Rot90(bc_cnn_layers.value(l
+).k(i)(j))),"full")
}
nnd2 +=z
}
}
nnd(l) =nnd2.toArray
}
(f._1, f._2, f._3, f._4, f._5, f._6,
f._7, nnd)
}
// dk db calcgradients
varcnn_layers= bc_cnn_layers.value
to)
{
valtype1= bc_cnn_layers.value(l).types
)()
vallena2=train_data5.map(f=> f._2(l
-).length).take()()
if(type1=="c"){
to)
{
to)
{
valrdd_dk_ij =train_data5.map{ f =>
valnn_a = f._2
valnn_d = f._8
valtmp_d =nn_d(l)(j)
)(i)
convn(Rot90(Rot90(tmp_a)),tmp_d,"valid")
}
)().)().cols)
val (dk_ij,count_dk)=rdd_dk_ij.treeAggregate((initdk,0L))(
seqOp = (c, v) => {
// c: (m, count), v: (m)
valm1 = c._1
valm2 =m1 + v
()
},
combOp = (c1, c2) => {
// c: (m, count)
valm1 = c1._1
valm2 = c2._1
valm3 =m1 +m2
(m3, c1._2 + c2._2)
})
valdk =dk_ij/count_dk.toDouble
cnn_layers(l).dk(i)(j) =dk
}
valrdd_db_j =train_data5.map{ f =>
valnn_d = f._8
valtmp_d =nn_d(l)(j)
Bsum(tmp_d)
}
valdb_j =rdd_db_j.reduce(_+ _)
valcount_db =rdd_db_j.count
valdb =db_j/count_db.toDouble
cnn_layers(l).db(j) =db
}
}
}
// net.dffW = net.od * (net.fv)' /size(net.od, 2);
// net.dffb = mean(net.od, 2);
valtrain_data6=train_data5.map{ f =>
valnn_od= f._6
valnn_fv= f._3
nn_od*nn_fv.t
}
valtrain_data7=train_data5.map{ f =>
valnn_od= f._6
nn_od
}
valinitffW= BDM.zeros[Double](bc_cnn_ffW.value.rows, bc_cnn_ffW.value.cols)
val(ffw2,countfffw2)=train_data6.treeAggregate((initffW,0L))(
seqOp = (c, v) => {
// c: (m, count), v: (m)
valm1 = c._1
valm2 =m1 + v
()
},
combOp = (c1, c2) => {
// c: (m, count)
valm1 = c1._1
valm2 = c2._1
valm3 =m1 +m2
(m3, c1._2 + c2._2)
})
valcnn_dffw=ffw2/countfffw2.toDouble
valinitffb= BDM.zeros[Double](bc_cnn_ffb.value.rows, bc_cnn_ffb.value.cols)
val(ffb2,countfffb2)=train_data7.treeAggregate((initffb,0L))(
seqOp = (c, v) => {
// c: (m, count), v: (m)
valm1 = c._1
valm2 =m1 + v
()
},
combOp = (c1, c2) => {
// c: (m, count)
valm1 = c1._1
valm2 = c2._1
valm3 =m1 +m2
(m3, c1._2 + c2._2)
})
valcnn_dffb=ffb2/countfffb2.toDouble
(train_data5,cnn_dffw,cnn_dffb,cnn_layers)
}
(8) CNNapplygrads
权重更新。
输入參数:
train_cnnbp:CNNbp输出值
bc_cnn_ffb:神经网络偏置參数
bc_cnn_ffW:神经网络权重參数
alpha:更新的学习率
输出參数:(cnn_ffW, cnn_ffb, cnn_layers)更新后权重參数。
/**
* NNapplygrads是权重更新
* 权重更新
*/
defCNNapplygrads(
train_cnnbp: (RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double],BDM[Double], BDM[Double], BDM[Double], BDM[Double],Array[Array[BDM[Double]]])], BDM[Double], BDM[Double], Array[CNNLayers]),
bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]],
alpha: Double): (BDM[Double], BDM[Double], Array[CNNLayers]) = {
valtrain_data5= train_cnnbp._1
valcnn_dffw= train_cnnbp._2
valcnn_dffb= train_cnnbp._3
varcnn_layers= train_cnnbp._4
varcnn_ffb= bc_cnn_ffb.value
varcnn_ffW= bc_cnn_ffW.value
valn =cnn_layers.length
to)
{
valtype1=cnn_layers(l).types
)()
vallena2=train_data5.map(f=> f._2(l
-).length).take()()
if(type1=="c"){
to)
{
to)
{
cnn_layers(l).k(ii)(j) =cnn_layers(l).k(ii)(j)
-cnn_layers(l).dk(ii)(j)
}
cnn_layers(l).b(j) =cnn_layers(l).b(j)
-cnn_layers(l).db(j)
}
}
}
cnn_ffW=cnn_ffW+cnn_dffw
cnn_ffb=cnn_ffb+cnn_dffb
(cnn_ffW,cnn_ffb,cnn_layers)
}
(9) CNNeval
误差计算。
/**
* nneval是进行前向传播并计算输出误差
* 计算神经网络中的每一个节点的输出值,并计算平均误差;
*/
defCNNeval(
batch_xy1: RDD[(BDM[Double], BDM[Double])],
bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],
bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],
bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]): Double ={
// CNNff是进行前向传播
valtrain_cnnff= CNN.CNNff(batch_xy1, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)
// error and loss
// 输出误差计算
valrdd_loss1=train_cnnff.map{ f =>
valnn_e= f._4 - f._1
nn_e
}
val(loss2,counte)=rdd_loss1.treeAggregate((0.0,0L))(
seqOp = (c, v) => {
// c: (e, count), v: (m)
vale1 = c._1
vale2 = (v :* v).sum
valesum =e1 +e2
()
},
combOp = (c1, c2) => {
// c: (e, count)
vale1 = c1._1
vale2 = c2._1
valesum =e1 +e2
(esum, c1._2 + c2._2)
})
valLoss= (loss2/counte.toDouble)*0.5
Loss
}
2.2.4 CNNModel解析
(1) CNNModel
CNNModel:存储CNN网络參数,包含:cnn_layers每一层的配置參数,cnn_ffW权重,dbn_b偏置。cnn_ffb偏置。
class CNNModel(
valcnn_layers:Array[CNNLayers],
valcnn_ffW:BDM[Double],
valcnn_ffb: BDM[Double])extends Serializable {
}
(2) predict
predict:依据模型进行预測计算。
/**
* 返回预測结果
* 返回格式:(label, feature, predict_label, error)
*/
defpredict(dataMatrix: RDD[(BDM[Double], BDM[Double])]): RDD[PredictCNNLabel] = {
valsc =dataMatrix.sparkContext
valbc_cnn_layers=sc.broadcast(cnn_layers)
valbc_cnn_ffW=sc.broadcast(cnn_ffW)
valbc_cnn_ffb=sc.broadcast(cnn_ffb)
// CNNff是进行前向传播
valtrain_cnnff= CNN.CNNff(dataMatrix,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)
valrdd_predict=train_cnnff.map{ f =>
vallabel= f._1
)()
valnnan= f._4
valerror= f._4 - f._1
PredictCNNLabel(label,nna1,nnan,error)
}
rdd_predict
}
(3) Loss
Loss:依据预測结果计算误差。
/**
* 计算输出误差
* 平均误差;
*/
defLoss(predict: RDD[PredictCNNLabel]): Double = {
valpredict1= predict.map(f => f.error)
// error and loss
// 输出误差计算
valloss1=predict1
val(loss2,counte)=loss1.treeAggregate((0.0,0L))(
seqOp = (c, v) => {
// c: (e, count), v: (m)
vale1 = c._1
vale2 = (v :* v).sum
valesum =e1 +e2
()
},
combOp = (c1, c2) => {
// c: (e, count)
vale1 = c1._1
vale2 = c2._1
valesum =e1 +e2
(esum, c1._2 + c2._2)
})
valLoss= (loss2/counte.toDouble)*0.5
Loss
}
转载请注明出处:
Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2的更多相关文章
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Deep learning与Neural Network
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...
- 通过Visualizing Representations来理解Deep Learning、Neural network、以及输入样本自身的高维空间结构
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visua ...
- Deep Learning 教程(斯坦福深度学习研究团队)
http://www.zhizihua.com/blog/post/602.html 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为 ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
随机推荐
- poj2217 Secretary 后缀数组
#include <iostream> #include <cstring> #include <string> #include <cstdio> u ...
- ython——杂货铺
三目运算: >>> 1 if 5>3 else 0 1 >>> 1 if 5<3 else 0 0 深浅拷贝: 一.数字和字符串 对于 数字 和 字符串 ...
- appium之android_uiautomator定位进阶版
前言 上一篇介绍uiautomator的定位方式都是类似这种'new UiSelector().xxx("xxx")',看起非常长,我也记不住,这很不python.于是本篇优化了定 ...
- python pdb模块
参考文件http://pythonconquerstheuniverse.wordpress.com/category/Python-debugger/ 翻译不是一一对应 Debug功能对于devel ...
- 持续集成---jenkins环境部署
一.环境准备 操作系统:linux系统,此时我安装的是centos6.5,操作步骤具体见博客<虚拟机安装centos6.5> 依赖软件:1.jdk, 2.tomcat9(需要安装两个,一个 ...
- BZOJ 3998 [TJOI2015]弦论 ——后缀自动机
直接构建后缀自动机. 然后. 然后只需要再后缀自动机的go树上类似二分的方法进行查找即可,实际上是“26分”. 然后遇到了处理right集合的问题,然后觉得在go和parent树上上传都是可以的,毕竟 ...
- 【强化学习】百度云BCC openai gym 环境配置
openai gym是RL算法的测试床.为了直观和便于调试,我们需要可视化界面.然而远程服务器使用openGL的问题比较棘手,这篇博客记录在百度云BCC上配置openai gym环境的注意事项. 按照 ...
- 【DFS序+树状数组】HDU 3887 Counting Offspring
http://acm.hdu.edu.cn/showproblem.php?pid=3887 [题意] 给定一棵树,给定这棵树的根 对于每个结点,统计子树中编号比他小的结点个数 编号从小到大一次输出 ...
- MongoDB_spring整合mongodb
参考 spring data mongodb 设置副本集读写分离模式 https://blog.csdn.net/u010889990/article/details/42644963
- php——数据库操作之规范性
今天在写一个项目,上传到服务器的时候出现500的错误,找了半天最后是因为数据库更新数据的语句写的不规范, 询问同事之后,同事说,数据库的增删改查语句写的不规范的时候有的时候会报错有的时候不会: 所以总 ...