Levenberg–Marquardt algorithm
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGFubWVuZ3dlbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGFubWVuZ3dlbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
function [x,minf] = minLM(f,x0,beta,u,v,var,eps)
format long;
if nargin == 6
eps = 1.0e-6;
end
S = transpose(f)*f;
k = length(f);
n = length(x0);
x0 = transpose(x0);
A = jacobian(f,var);
tol = 1; while tol>eps
Fx = zeros(k,1);
for i=1:k
Fx(i,1) = Funval(f(i),var,x0);
end
Sx = Funval(S,var,x0);
Ax = Funval(A,var,x0);
gSx = transpose(Ax)*Fx;
Q = transpose(Ax)*Ax; while 1
dx = -(Q+u*eye(size(Q)))\gSx; x1 = x0 + dx;
for i=1:k
Fx1(i,1) = Funval(f(i),var,x1);
end
Sx1 = Funval(S,var,x1);
tol = norm(dx);
if tol<=eps
break;
end if Sx1 >= Sx+beta*transpose(gSx)*dx
u = v*u;
continue;
else
u = u/v;
break;
end
end
x0 = x1;
end
x = x0;
minf = Funval(S,var,x);
format short;
Levenberg–Marquardt algorithm的更多相关文章
- matlab实现高斯牛顿法、Levenberg–Marquardt方法
高斯牛顿法: function [ x_ans ] = GaussNewton( xi, yi, ri) % input : x = the x vector of 3 points % y = th ...
- [SLAM] 01 "Simultaneous Localization and Mapping" basic knowledge
发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- Tikhonov regularization 吉洪诺夫 正则化
这个知识点很重要,但是,我不懂. 第一个问题:为什么要做正则化? In mathematics, statistics, and computer science, particularly in t ...
- Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
- [SLAM] 01. "Simultaneous Localization and Mapping"
本篇带你认识SLAM,形成客观的认识和体系 一.通过行业招聘初步了解SLAM 发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
随机推荐
- Linux 学习(四)
搭建jdk 安装jdk操作: 1.光驱挂载:mount /dev/cdrom /mnt 2.拷贝安装包至其他文件夹(如home目录下) 3.执行安装包(bin包:./包名) 4.配置环境变量:打开文件 ...
- JAVA程序员面试笔试宝典1
1.为什么Java中有些接口没有任何方法? 这些没有任何方法声明的接口又被称为标识接口,标识接口对于实现它的类没有任何语义上的要求,它仅仅充当一个标识的作用,用来表明它的类属于一个特定的类型. 2.j ...
- JS函数assign
Object函数提供了一个叫做assign的函数,用来合并多个对象. Object.assign(...): 你可以传递多个对象给该函数,这些对象中的自有且可枚举的属性,会被拷贝给第一个对象. var ...
- 05JavaScript中的事件处理
JavaScript中的事件处理 在JavaScript中,事件的发生主要是由窗口中内容变化.键盘和鼠标引起的.JavaScript在某些事件发生的时候,可以通过一些相应的事件处理器来捕获这些事件,并 ...
- HDU多校Round 7
Solved:2 rank:293 J. Sequense 不知道自己写的什么东西 以后整数分块直接用 n / (n / i)表示一个块内相同n / i的最大i #include <bits/s ...
- vue-router + axios token登录状态认证
vue项目中登录状态判断往往基于jwt认证,我们可以采用判断本地是否存在token,及token是否过期或token值错误 1.利用vue-router 钩子函数判断本地是否存在token impor ...
- power coefficient calculation -- post processing
input: unscaled moment of one bladeoutput: power coefficient of a 3-blades wind/tidal turbine matlab ...
- sql杂记:一些坑和数据库恢复
这是一篇纯粹的乱七八糟的笔记...(勿喷)主要记录一下初入SQL坑的杂七杂八的注意事项. 一.先补充下事务的写法: start transaction;#开始事务 --各种事务... commit;# ...
- Unity常用常找(二)
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/51315050 作者:car ...
- Spring Tool Suite 安装
第一步:到http://spring.io/tools/sts/all/上下载对应版本.(此处以博主Windows64位系统为例) 第二步: 进入eclipse,依次点击help-->Insta ...