题解 NOI2018 归程
题解 NOI2018 归程
题意
本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定。 魔力之都可以抽象成一个 n 个节点、m 条边的无向连通图(节点的编号从 1 至 n)。我们依次用 l,a 描述一条边的长度、海拔。 作为季风气候的代表城市,魔力之都时常有雨水相伴,因此道路积水总是不可避免 的。由于整个城市的排水系统连通,因此有积水的边一定是海拔相对最低的一些边。我们用水位线来描述降雨的程度,它的意义是:所有海拔不超过水位线的边都是有积水的。
Yazid 是一名来自魔力之都的OIer,刚参加完ION2018 的他将踏上归程,回到他 温暖的家。 Yazid 的家恰好在魔力之都的 1 号节点。对于接下来 Q 天,每一天Yazid 都会告诉你他的出发点 v ,以及当天的水位线p。 每一天,Yazid 在出发点都拥有一辆车。这辆车由于一些故障不能经过有积水的边。 Yazid 可以在任意节点下车,这样接下来他就可以步行经过有积水的边。但车会被留在他下车的节点并不会再被使用。 需要特殊说明的是,第二天车会被重置,这意味着:
车会在新的出发点被准备好。
Yazid 不能利用之前在某处停放的车。 Yazid 非常讨厌在雨天步行,因此他希望在完成回家这一目标的同时,最小化他步行经过的边的总长度。请你帮助 Yazid 进行计算。 本题的部分测试点将强制在线,具体细节请见【输入格式】和【子任务】。
解法
作为NOI的第一道题,此题的价值不必多说,但是卡spfa这一点真的是引起人神共愤
现在我们要考虑如何做这道题。
因为高度低的边容易积水,有了等于没有,所以我们可以先求出一个最大生成树,将问题转移到树上。
这时,相当于我们要找到这棵树上对应边权的最值。
那么就会想到kruskal重构树。
重构树有三个性质:
1.树上除叶子结点以外的点都对应着原来生成树中的边,叶子结点就是原来生成树上的节点。
2.由于新点的创建顺序与原来生成树上边权的大小有关,可以发现,从每个点到根节点上除叶子结点外按顺序访问到的点的点权是单调的。
3.出于kruskal算法贪心的性质,两个点u和v的lca的点权就对应着它们最小生成树上的瓶颈。
那么我们考虑对于一个点权大于水位线的虚拟节点u,在他的子树内的所有叶子节点两两路径上的瓶颈必然大于水位线,也就是说任意两个叶子节点可以免费的到达。那么这个节点子树内的叶子节点的走路里程就是这些叶子中到1的最小距离。
这样我们每天从v向上跳,找到深度最小的点权大于水位线的虚拟节点就可以了。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#include <vector>
#include <queue>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
const int maxn=200000+15;
const int maxm=400000+15;
struct node {
int u,v,h;
bool operator < (const node& a) const {
return h>a.h;
}
node (int u=0,int v=0,int h=0):u(u),v(v),h(h){}
}bian[maxm];
int fa[maxn*2],anc_w[2*maxn];
int _find(int x) {
return x==fa[x]?x:fa[x]=_find(fa[x]);
}
vector<int> G_tree[maxn*2];
void add_edge_tree(int u,int v) {
G_tree[u].push_back(v);
G_tree[v].push_back(u);
}
struct Edge {
int u,v,w;
Edge(int u=0,int v=0,int w=0):u(u),v(v),w(w){}
};
vector<int> G[maxn];
vector<Edge> edge;
void add_edge(int u,int v,int w) {
edge.push_back(Edge(u,v,w));
edge.push_back(Edge(v,u,w));
int ecnt=edge.size();
G[u].push_back(ecnt-2);
G[v].push_back(ecnt-1);
}
struct Node{
int id,d;
Node(int id=0,int d=0):id(id),d(d){}
bool operator < (const Node a) const{
return d>a.d;
}
};
priority_queue<Node> q;
int n,m,cnt;
int d[maxn];
bool vis[maxn];
void dij() {
for(int i=2;i<=n;i++) d[i]=INF;del(vis,0);
q.push(Node(1,0));
while(!q.empty()) {
Node u=q.top();q.pop();
if(vis[u.id]) continue;
vis[u.id]=1;
for(int i=0;i<G[u.id].size();i++) {
Edge& e=edge[G[u.id][i]];
if(d[e.v]>d[u.id]+e.w) {
d[e.v]=d[u.id]+e.w;
q.push(Node(e.v,d[e.v]));
}
}
}
}
int anc[maxn*2][25],minn[2*maxn];
void dfs(int u,int f) {
minn[u]=INF;anc[u][0]=f;
if(u<=n) minn[u]=d[u];
for(int i=0;i<G_tree[u].size();i++) {
int v=G_tree[u][i];
if(v==f) continue;
dfs(v,u);
minn[u]=min(minn[u],minn[v]);
}
}
void _init() {
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=cnt;i++) G_tree[i].clear();
edge.clear();
}
int main()
{
int id;read(id);
while(id--) {
read(n),read(m);
for(int i=1;i<=n;i++) fa[i]=i;
int u,v,h,w;
for(int i=1;i<=m;i++) {
read(u),read(v),read(w),read(h);
bian[i]=node(u,v,h);
add_edge(u,v,w);
}
dij();
sort(bian+1,bian+1+m);
int k=0;cnt=n;
for(int i=1;i<=m;i++) {
int f1=_find(bian[i].u),f2=_find(bian[i].v);
if(f1==f2) continue;
anc_w[++cnt]=bian[i].h;
fa[cnt]=fa[f2]=fa[f1]=cnt;//要更新
add_edge_tree(f1,cnt);add_edge_tree(f2,cnt);
++k;
if(k==n-1) break;
}
dfs(cnt,0);
for(int j=1;j<=20;j++)
for(int i=1;i<=cnt;i++)
anc[i][j]=anc[anc[i][j-1]][j-1];
int Q,K,S,last=0;
read(Q),read(K),read(S);
for(int i=1;i<=Q;i++) {
int v0,p0;
read(v0),read(p0);
v0=(v0+K*last-1)%n+1;
p0=(p0+K*last)%(S+1);
for(int j=20;j>=0;j--)
if(anc[v0][j]&&anc_w[anc[v0][j]]>p0)
v0=anc[v0][j];
last=minn[v0];
printf("%d\n",last);
}
_init();
}
return 0;
}
题解 NOI2018 归程的更多相关文章
- [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)
洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...
- BZOJ_5415_[Noi2018]归程_kruscal重构树+倍增+最短路
BZOJ_5415_[Noi2018]归程_kruscal重构树+倍增 Description www.lydsy.com/JudgeOnline/upload/noi2018day1.pdf 好久不 ...
- [NOI2018]归程 kruskal重构树
[NOI2018]归程 LG传送门 kruskal重构树模板题. 另一篇文章里有关于kruskal重构树更详细的介绍和更板子的题目. 题意懒得说了,这题的关键在于快速找出从查询的点出发能到达的点(即经 ...
- NOI2018 D1T1 [NOI2018]归程 解题报告
P4768 [NOI2018]归程 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点.\(m\) 条边的无向连通图(节点的编号从 \ ...
- [NOI2018]归程(kruscal重构树)
[NOI2018]归程 题面太长辣,戳这里 模拟赛上写了一个spfa (关于spfa,它已经死了),然后一个st表水完暴力跑路.考后说是Kruscal重构树或者可持久化并查集???这都是些什么东西.不 ...
- [luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)
[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树) 题面 题面较长,这里就不贴了 分析 看到不能经过有积水的边,即不能经过边权小于一定值的边,我们想到了kru ...
- Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)
P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编 ...
- P4768 [NOI2018]归程(kruskal 重构树)
洛谷P4768 [NOI2018]归程 LOJ#2718.「NOI2018」归程 用到 kruskal 重构树,所以先说这是个啥 显然,这和 kruskal 算法有关系 (废话 这个重构树是一个有点权 ...
- 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]
题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...
随机推荐
- GuiLite 1.2 发布(希望通过这100+行代码来揭示:GuiLite的初始化,界面元素Layout,及消息映射的过程)
经过开发群的长期验证,我们发现:即使代码只有5千多行,也不意味着能够轻松弄懂代码意图.痛定思痛,我们发现:虽然每个函数都很简单(平均长度约为30行),可以逐个击破:但各个函数之间如何协作,却很难说明清 ...
- 第五课 Struts的控制器【续】Action类的execute()方法
1.Action类的execute()方法: public ActionForward execute(ActionMapping mapping, ...
- C语言8大经典排序算法(1)
算法一直是编程的基础,而排序算法是学习算法的开始,排序也是数据处理的重要内容.所谓排序是指将一个无序列整理成按非递减顺序排列的有序序列.排列的方法有很多,根据待排序序列的规模以及对数据的处理的要求,可 ...
- APDU报文【转】
本文转载自:http://www.cnbolgs.com/snail0404/p/5436348.html APDU # APDU # 定义:APDU(ApplicationProtocolDat ...
- YTU 2642: 填空题:类模板---求数组的最大值
2642: 填空题:类模板---求数组的最大值 时间限制: 1 Sec 内存限制: 128 MB 提交: 646 解决: 446 题目描述 类模板---求数组的最大值 找出一个数组中的元 ...
- phpstorm配置php脚本执行
1.到设置中配置 2.配置具体项 3.完了就可以执行php脚本了
- UVA - 12345 带修改的莫队
题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...
- 【HAOI 2007】 理想的正方形
[题目链接] 点击打开链接 [算法] 单调队列 [代码] #include<bits/stdc++.h> using namespace std; #define MAXN 1010 co ...
- oracle 定时器调用存储过程
转载请说明出处:http://t22011787.iteye.com/blog/1112745 一.查询系统中的job,可以查询视图 --相关视图 select * from dba_jobs; se ...
- Netty,Thrifty
小白科普:Netty有什么用? https://mp.weixin.qq.com/s/PTKnRQ_hLf8BBPYnywLenA Thrifty 是基于.net Attribute 实现了标准 Th ...