(转)浅谈trie树
浅谈Trie树(字典树)
Trie树(字典树)
一、引入
字典是干啥的?查找字的。
字典树自然也是起查找作用的。查找的是啥?单词。
看以下几个题:
1、给出n个单词和m个询问,每次询问一个单词,回答这个单词是否在单词表中出现过。
答:简单!map,短小精悍。
好。下一个
2、给出n个单词和m个询问,每次询问一个前缀,回答询问是多少个单词的前缀。
答:map,把每个单词拆开。
judge:n<=200000,TLE!
这就需要一种高级数据结构——Trie树(字典树)
二、原理
在本篇文章中,假设所有单词都只由小写字母构成
对cat,cash,app,apple,aply,ok 建一颗字典树,建成之后如下图所示
由此可以看出:
1、字典树用边表示字母
2、有相同前缀的单词公用前缀节点,那我们可以的得出每个节点最多有26个子节点(在单词只包含小写字母的情况下)
3、整棵树的根节点是空的。为什么呢?便于插入和查找,这将会在后面解释。
4、每个单词结束的时候用一个特殊字符表示,图中用的‘′,那么从根节点到任意一个‘′,那么从根节点到任意一个‘’所经过的边的所有字母表示一个单词。
三、基本操作
A、insert,插入一个单词
1.思路
从图中可以直观看出,从左到右扫这个单词,如果字母在相应根节点下没有出现过,就插入这个字母;否则沿着字典树往下走,看单词的下一个字母。
这就产生一个问题:往哪儿插?计算机不会自己选择位置插,我们需要给它指定一个位置,那就需要给每个字母编号。
我们设数组trie[i][j]=k,表示编号为i的节点的第j个孩子是编号为k的节点。
什么意思呢?
这里有2种编号,一种是i,k表示节点的位置编号,这是相对整棵树而言的;另一种是j,表示节点i的第j的孩子,这是相对节点i而言的。
不理解?看图
还是单词cat,cash,app,apple,aply,ok
我们就按输入顺序对其编第一种号,红色表示编号结果。因为先输入的cat,所以c,a,t分别是1,2,3,然后输入的是cash,因为c,a是公共前缀,所以从s开始编,s是4,以此类推。
注意这里相同字母的编号可能不同
第二种编号,相对节点的编号,紫色表示编号结果。
因为每个节点最多有26个子节点,我们可以按他们的字典序从0——25编号,也就是他们的ASCLL码-a的ASCLL码。
注意这里相同字母的编号相同
实际上每个节点的子节点都应该从0编到——25,但这样会发现许多事根本用不到的。比如上图的根节点应该分出26个叉。节约空间,用到哪个分哪个。
这样编号有什么用呢?
回到数组trie[i][j]=k。 数组trie[i][j]=k,表示编号为i的节点的第j个孩子是编号为k的节点。
那么第二种编号即为j,第一种编号即为i,k
2、代码
void insert()//插入单词s
{
len=strlen(s);//单词s的长度
root=0;//根节点编号为0
for(int i=0;i<len;i++)
{
int id=s[i]-'a';//第二种编号
if(!trie[root][id])//如果之前没有从root到id的前缀
trie[root][id]=++tot;//插入,tot即为第一种编号
root=trie[root][id];//顺着字典树往下走
}
}
B、search,查找
查找有很多种,可以查找某一个前缀,也可以查找整个单词。
再次我们以查找一个前缀是否出现过为例讲解
1、思路
从左往右以此扫描每个字母,顺着字典树往下找,能找到这个字母,往下走,否则结束查找,即没有这个前缀;前缀扫完了,表示有这个前缀。
2、代码
bool find()
{
len=strlen(s);
root=0;//从根结点开始找
for(int i=0;s[i];i++)
{
int x=s[i]-'a';//
if(trie[root][x]==0) return false;//以root为头结点的x字母不存在,返回0
root=trie[root][x];//为查询下个字母做准备,往下走
}
return true;//找到了
}
3、如果是查询某个单词的话,我们用bool变量 v[i]表示节点i是否是单词结束的标志。
那么最后return的是v[root],所以在插入操作中插入完每个单词是,要对单词最后一个字母的v[i]置为true,其他的都是false
4、如果是查询前缀出现的次数的话,那就在开一个sum[],表示位置i被访问过的次数,
那么最后return的是sum[root],插入操作中每访问一个节点,都要让他的sum++
这里前缀的次数是标记在前缀的最后一个字母所在位置的后一个位置上。
比如:前缀abc出现的次数标记在c所在位置的后一个位置上,
四、完整代码
1、查询是否出现
/*
trie tree的储存方式:将字母储存在边上,边的节点连接与它相连的字母
trie[rt][x]=tot:rt是上个节点编号,x是字母,tot是下个节点编号
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define maxn 2000010
using namespace std;
int tot=,n;
int trie[maxn][];
//bool isw[maxn];查询整个单词用
void insert(char *s,int rt)
{
for(int i=;s[i];i++)
{
int x=s[i]-'a';
if(trie[rt][x]==)//现在插入的字母在之前同一节点处未出现过
{
trie[rt][x]=++tot;//字母插入一个新的位置,否则不做处理
}
rt=trie[rt][x];//为下个字母的插入做准备
}
/*isw[rt]=true;标志该单词末位字母的尾结点,在查询整个单词时用到*/
}
bool find(char *s,int rt)
{
for(int i=;s[i];i++)
{
int x=s[i]-'a';
if(trie[rt][x]==)return false;//以rt为头结点的x字母不存在,返回0
rt=trie[rt][x];//为查询下个字母做准备
}
return true;
//查询整个单词时,应该return isw[rt]
}
char s[];
int main()
{
tot=;
int rt=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
cin>>s;
insert(s,rt);
}
scanf("%d",&n);
for(int i=;i<=n;i++)
{
cin>>s;
if(find(s,rt))printf("YES\n");
else printf("NO\n");
}
return ;
} 数组模拟
数组模拟
2、查询前缀出现次数
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int trie[][],len,root,tot,sum[];
bool p;
int n,m;
char s[];
void insert()
{
len=strlen(s);
root=;
for(int i=;i<len;i++)
{
int id=s[i]-'a';
if(!trie[root][id]) trie[root][id]=++tot;
sum[trie[root][id]]++;//前缀后移一个位置保存
root=trie[root][id];
}
}
int search()
{
root=;
len=strlen(s);
for(int i=;i<len;i++)
{
int id=s[i]-'a';
if(!trie[root][id]) return ;
root=trie[root][id];
}//root经过此循环后变成前缀最后一个字母所在位置的后一个位置
return sum[root];//因为前缀后移了一个保存,所以此时的sum[root]就是要求的前缀出现的次数
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
cin>>s;
insert();
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
cin>s;
printf("%d\n",search());
}
} 数组模拟
数组模拟
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
char s[];
int n,m;
bool p;
struct node
{
int count;
node * next[];
}*root;
node * build()
{
node * k=new(node);
k->count=;
memset(k->next,,sizeof(k->next));
return k;
}
void insert()
{
node * r=root;
char * word=s;
while(*word)
{
int id=*word-'a';
if(r->next[id]==NULL) r->next[id]=build();
r=r->next[id];
r->count++;
word++;
}
}
int search()
{
node * r=root;
char * word=s;
while(*word)
{
int id=*word-'a';
r=r->next[id];
if(r==NULL) return ;
word++;
}
return r->count;
}
int main()
{
root=build();
scanf("%d",&n);
for(int i=;i<=n;i++)
{
cin>>s;
insert();
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
cin>>s;
printf("%d\n",search());
}
} 指针写法
指针写法
五、模板题
hud 1251 统计难题 http://acm.hdu.edu.cn/showproblem.php?pid=1251
codevs 4189 字典 http://codevs.cn/problem/4189/
(转)浅谈trie树的更多相关文章
- 浅谈 trie树 及其实现
定义:又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构, 如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. 核心思想:是空间换时间.利用字符串的公共前缀来降低查询时间的开 ...
- 浅谈Trie树(字典树)
Trie树(字典树) 一.引入 字典是干啥的?查找字的. 字典树自然也是起查找作用的.查找的是啥?单词. 看以下几个题: 1.给出n个单词和m个询问,每次询问一个单词,回答这个单词是否在单 ...
- [转] 浅谈Trie树(字典树)
原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6290732.html Trie树(字典树) 一.引入 字典是干啥的?查找字的. 字典树自然也是起查找 ...
- 浅谈Trie树
Trie树,也叫字典树.顾名思义,它就是一个字典 字典是干什么的?查找单词!(英文字典哦) 个人认为字典树这个名字起得特别好,因为它真的跟字典特别像,一会r你就知道了. 注:trie的中文翻译就是单词 ...
- 浅谈 trie树 及事实上现
定义:又称字典树,单词查找树或者前缀树,是一种用于高速检索的多叉树结构. 如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. 核心思想:是空间换时间.利用字符串的公共前缀来减少查询时间的开 ...
- 浅谈B+树索引的分裂优化(转)
http://www.tamabc.com/article/85038.html 从MySQL Bug#67718浅谈B+树索引的分裂优化 原文链接:http://hedengcheng.com/ ...
- 浅谈oracle树状结构层级查询之start with ....connect by prior、level及order by
浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...
- 浅谈oracle树状结构层级查询测试数据
浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...
- 浅谈Trie
所谓\(Trie\)就是字典树. 何为字典树?想象一下我们平时用拼音查字法在字典树查汉字的时候,一位一位确定这个汉字的拼音从而翻到我们想要看的那一面. 所以\(Trie\)树跟字典一样,是一种逐位检索 ...
随机推荐
- MySQL与MongoDB的区别
一.MongoDB简介 什么是MongoDB ?MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统.在高负载的情况下,添加更多的节点,可以保证服务器性能.MongoDB 旨 ...
- WPF DataGrid foreground 绑定问题
初学WPF , 希望对DataGrid 中所属的一个Column名下的值的颜色动态修改 <DataGridTextColumn Header="隐含回购利率(%)" Bin ...
- 深入解读docker网络与kubernetes网络
前言:你是否学习使用k8s很久很久了可是对于网络这块仍旧似懂非懂呢? 您是否对网上一堆帖子有如下的抱怨: 打开多个博客,然后发现有区别么? 明显是直译过来的,越看越迷糊 “因为xxx,所以yyy”,. ...
- vim 不同的插入方式
在命令行模式下进入到输入模式 可以敲击 i.a.o. s. I. A. O. S 它们之间的区别做下备忘:i:在光标所在字符前开始插入a:在光标所在字符后开始插入o:在光标所在行的下面另起一新行插入s ...
- Apache-kylin-2.0.0-bin-hbase1x.tar.gz的下载与安装(图文详解)
首先,对于Apache Kylin的安装,我有话要说. 由于Apache Kylin本身只是一个Server,所以安装部署还是比较简单的.但是它的前提要求是Hadoop.Hive.HBase必须已经安 ...
- Centos 6.8安装 SVN
SVN SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁移到Subver ...
- Asp.net core 框架整理
https://github.com/thangchung/awesome-dotnet-core#cms
- 跟我一起玩Win32开发(3):窗口的重绘
c可以编译#include <Windows.h> //先声明一下消息处理函数 LRESULT CALLBACK MyWindowProc(HWND hwnd, UINT msg, WPA ...
- DFS水题 URAL 1152 False Mirrors
题目传送门 /* 题意:一个圈,每个点有怪兽,每一次射击能消灭它左右和自己,剩余的每只怪兽攻击 搜索水题:sum记录剩余的攻击总和,tot记录承受的伤害,当伤害超过ans时,结束,算是剪枝吧 回溯写挫 ...
- 修改dns访问android.com
1.几个常用dns服务器 8.8.8.8 美国 加利福尼亚州圣克拉拉县山景市谷歌公司DNS服务器 8.8.4.4 美国 加利福尼亚州圣克拉拉县山景市谷歌公司DNS服务器 8.8.4.3 美国 加利福尼 ...