process data
# version 1.0
def connect_mysql(sql, oper_type="select", data_l=None):
conn = pymysql.connect(host='localhost', user="root", password="",
database="work", port=3306)
cur = conn.cursor()
if oper_type == "insert":
cur.executemany(sql, data_l)
conn.commit()
else:
cur.execute(sql)
result = cur.fetchall()
# print(type(result), "result")
conn.close()
return result def process_jobs(field_name):
sql = "select j." + field_name + " FROM personal_jobs j"
column_name = connect_mysql(sql, oper_type="select")
row_total = (len(column_name))
row_category = set(column_name) # init category dict
category_dict = {}
for k in row_category:
category_dict[k] = 0 # calculate amount
cal_nmu = 0
for k in row_category:
for r in column_name:
if r == k:
cal_nmu += 1
category_dict[k] = cal_nmu
cal_nmu = 0
print(type(category_dict.items()), category_dict.items())
print(row_total, len(category_dict.items()))
return row_total, category_dict process_jobs("job_salary")
version 1.1
def count_times(all_list):
ls = []
item_list = list(set(all_list))
for m in item_list:
c = all_list.count(m)
ls.append([m, c])
return sorted(ls) def process_salary(field_name):
# sql = "select " + field_name + " from work.personal_jobs where job_exp = '1-3年';"
sql = "select " + field_name + " from work.personal_jobs where job_exp = '1年以内' or job_exp = '经验不限';"
original_sal = connect_mysql(sql)
# sort salary order
row_category = list(set(original_sal))
general_min, general_avg, general_max = [], [], []
# cal_num = 0
for sal in row_category:
# calculate category amount
# for cat in column_name:
# if cat == sal:
# cal_num += 1
# process salary
if field_name == "job_salary":
sal_tmp = str(sal).strip("('").strip("K',)").split("K-")
general_min.append(int(sal_tmp[0]))
general_max.append(int(sal_tmp[1])) # process experience
if field_name == "job_exp":
print(original_sal) # initial again
# cal_num = 0 # calculate min sal
min_sal = count_times(general_min)
for m1 in min_sal:
min_s = str(m1[0]) + "K"
m1[0] = min_s # calculate max sal
max_sal = count_times(general_max)
for m2 in max_sal:
min_s = str(m2[0]) + "K"
m2[0] = min_s # calculate avg sal
avg_sal = count_times(original_sal)
print("original: ", avg_sal)
for a1 in avg_sal:
sal_tmp_1 = str(a1[0]).strip("('").strip("K',)").split("K-")
a1[0] = (int(sal_tmp_1[0]) + int(sal_tmp_1[1])) / 2.0
avg_sal = sorted(avg_sal) for a2 in avg_sal:
a2[0] = str(a2[0]) + "K"
# debug
print(len(min_sal), min_sal)
print(len(avg_sal), avg_sal)
print(len(max_sal), max_sal)
return min_sal, avg_sal, max_sal # process_salary("job_salary")
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from collections import Counter
from scipy.misc import imread def process_reqirement(field_name):
sql = "select " + field_name + " from work.personal_jobs where job_exp = '1年以内' or job_exp = '经验不限';"
original_req = connect_mysql(sql)
userdict = ["C", "C#", "C++", "Go", "Linux", "MongoDB", "Mysql", "PostgreSQL", "Ajax", "Bootstrap", "CSS", "Django", "Docker", "Flask", "Git", "http", "tcp", "Java", "JavaScript", "Jquery", "Oracle", "Python", "Redis", "Ruby", "Scrapy", "shell", "Tornado", "Web", "Zabbix", "RESTful", "云计算", "分布式", "前端", "后端", "大数据", "高并发", "数据分析", "数据挖掘", "机器学习", "爬虫", "算法", "自动化", "运维", "集群"] jieba.load_userdict(userdict)
# print(type(original_req), str(original_req))
text0 = Counter(jieba.cut(str(original_req)))
text1 = " ".join(jieba.cut(str(original_req)))
[item for item in sorted(text0.values())]
# print(text0.keys(), text0.values())
# print(type(text0), text0) # # create word cloud
# wordcloud = WordCloud(font_path=r"D:\wwj\work\script\web\personal\database_operation\MSYH.TTC",
# background_color="white", mask=imread("china.jpg")).generate(text1)
# plt.imshow(wordcloud)
# plt.axis("off")
# plt.show() # find requirement item what we really need
req_list = []
# print(len(text0.keys()), text0)
for k, v in text0.items():
for kk, vv in text0.items():
if str(k).lower() == str(kk).lower():
# print(k, v)
req_list.append([k, (v + vv)])
# print(k, v)
break
print(len(req_list), req_list) for t in userdict:
for k, v in text0.items():
if t.lower() == str(k).lower():
req_list.append([t, v])
break
# print(req_list)
return req_list
process_reqirement("job_requirement")
def user_defined(file_name):
user_list = []
with open(file_name, "r", encoding="utf8") as f:
for i in f:
user_list.append(i.strip())
return user_list def process_company(field_name):
sql = "select " + field_name + " from work.personal_jobs"
company = [list(i) for i in connect_mysql(sql)]
user_list = user_defined("t.txt")
user_list = ['C','C#','C++','Go','Linux','MongoDB','Mysql','PostgreSQL','Ajax','Bootstrap','CSS','Django','Docker','Flask','Git','http','tcp','Java','JavaScript','Jquery','Oracle','Python','Redis','Ruby','Scrapy','shell','Tornado','Web','RESTful','云计算','分布式','前端','后端','大数据','高并发','数据分析','数据挖掘','机器学习','爬虫','算法','自动化','测试','运维','集群']
jieba.load_userdict(user_list)
me_list = ['python', 'django', 'linux', '运维', '自动化', '爬虫', '数据分析', 'shell', 'mysql', 'oracle']
req_list, suit_list = [], []
for req in company:
req_dict = Counter(jieba.cut(req[1]))
req_list.append([req[0], [k for k in req_dict.keys() if k in user_list]])
for r in req_list:
if len(r[1]) > 0:
# print(r[1])
own = [item for item in me_list if item in r[1]]
if len(own) > 0:
suit_list.append([r[0], int(len(own) * 100/len(r[1]))])
return sorted(suit_list, key=lambda x: x[1])
# print(sorted(suit_list, key=lambda x: x[1]))
process_company("company_name, job_requirement")
process data的更多相关文章
- 1.3 Quick Start中 Step 8: Use Kafka Streams to process data官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Step 8: Use Kafka Streams to process data ...
- [CDH] Process data: integrate Spark with Spring Boot
c 一.Spark 统计计算 简单统计后写入Redis. /** * 订单统计和乘车人数统计 */ object OrderStreamingProcessor { def main(args: Ar ...
- Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices
January 22, 2019Use Cases, Apache Flink Lasse Nedergaard Recently there has been significant dis ...
- [AJAX系列]$.post(url,[data],[fn],[type])
概述: 通过远程HTTP POST请求载入信息 参数: url:发送请求地址 data:待发送Key/value值 callback:发送成功时回调函数 type:返回内容格式 xml html ...
- Data Science at the Command Line学习笔记(二)
1.vagrant建立简单httpserver方法: 1)映射端口 修改Vagrantfile, 末尾添加本地端口和虚机端口的映射关系, 然后执行vagrant reload. Vagrant::Co ...
- [Chapter 3 Process]Practice 3.3 Discuss three major complications that concurrent processing adds to an operating system.
3.3 Original version of Apple's mobile iOS operating system provied no means of concurrent processi ...
- Learn know more about big data
As we all know,we are in a big data age now."Every sword has two slides",as a ITer,we shou ...
- Monitoring and Tuning the Linux Networking Stack: Receiving Data
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ ...
- Big Data Analytics for Security(Big Data Analytics for Security Intelligence)
http://www.infoq.com/articles/bigdata-analytics-for-security This article first appeared in the IEEE ...
随机推荐
- git apply failed (转载)
转自:http://blog.csdn.net/aaronzzq/article/details/6955893 git version 1.6.0.4 几个新手刚刚开始接触 Git,为了维护核心仓库 ...
- E20170415-ms
opaque adj 不透明的 n 不透明 adapter n 配适器
- 51nod 1344 【前缀和】
思路:求一下最小负数的前缀和 #include<cstdio> #include <map> #include<iostream> #include<stri ...
- template code 引用的一些问题
1.问题: 引用同一个norlib.tt 下面的tt . 一个KSTrade 正确. 一个 NDAP就报错. 报错说源文件某个函数有错误 helper.Common.tt 错误 2.结果: NDAP ...
- bzoj 2084: [Poi2010]Antisymmetry【回文自动机】
manacher魔改,hash+二分都好写,但是我魔改了个回文自动机就写自闭了orz 根本上来说只要把==改成!=即可,但是这样一来很多停止条件就没了,需要很多特判手动刹车,最后统计一下size即可 ...
- oracle错误:1067进程意外终止
oracle错误:1067进程意外终止我Oracle安装完了之后可以运行的 ,过了一段时间不可以了,就上网找了一下,原来是自己的ip已经改变.我一直使用IP地址的. 将D:\oracle\produc ...
- Python %s和%r的区别
%s 用str()方法处理对象 %r 用rper()方法处理对象,打印时能够重现它所代表的对象(rper() unambiguously recreate the object it represen ...
- OkHttp下载文件中途断网报Can't create handler inside thread that has not called Looper.prepare()异常的解决办法
最近做项目时出现个问题. 在一个基类中,创建一个Handler对象用于主线程向子线程发送数据,代码如下: this.mThirdHandler = new Handler(){ @Override p ...
- border 0px和border none的区别
border:0px这个表示的是边框为0像素,表示边框的像素 border:none 这个表示无边框(边框的绘制方式),边框的绘制方式有很多种:solid dashed等等
- log4go折腾
导包 go get -u github.com/alecthomas/log4go log4go.xml配置 <logging> <filter enabled="true ...