HDU 5876 补图 单源 最短路
---恢复内容开始---
Sparse Graph
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2590 Accepted Submission(s): 902
Now you are given an undirected graph G of N nodes and M bidirectional edges of unit length. Consider the complement of G, i.e., H. For a given vertex S on H, you are required to compute the shortest distances from S to all N−1 other vertices.
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <queue>
#include <map>
#include <set>
#include <vector>
using namespace std;
const int maxn=2e5+;
int n,m,s;
vector<int> g[maxn];
int ans[maxn],vis[maxn];
set<int> a,b;
void bfs(int x)
{
for(int i=;i<=n;i++)
if(s!=i)
a.insert(i);
queue<int> q;
q.push(x);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=;i<g[u].size();i++)
{
int v=g[u][i];
if(a.count(v))
{
b.insert(v);
a.erase(v);
}
}
set<int>::iterator it;
for(it=a.begin();it!=a.end();it++)
{
q.push(*it);
ans[*it]=ans[u]+;
}
a.swap(b);
b.clear();
}
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
a.clear(),b.clear();
for(int i=;i<=n;i++)
{
g[i].clear();
}
memset(ans,-,sizeof(ans));
for(int i=;i<m;i++)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
cin>>s;
ans[s]=;
// set<int>::iterator j;
// for(j=a.begin();j!=a.end();j++)
// cout<<*j<<endl;
bfs(s);
if(s!=n)
for(int i=;i<=n;i++)
{
if(i!=s)
{
if(i!=n)
cout<<ans[i]<<" ";
else
cout<<ans[n]<<endl;
}
}
else
for(int i=;i<=n-;i++)
{
if(i==n-)
cout<<ans[n-]<<endl;
else
cout<<ans[i]<<" ";
}
}
return ;
}
数组超时代码
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int maxn=2e5+;
int n,m,s;
vector<int> g[maxn];
int ans[maxn],vis[maxn],a[maxn];
void bfs(int x)
{
vis[x]=;
queue<int> q;
q.push(x);
int cnt=;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=;i<g[u].size();i++)
{
int v=g[u][i];
if(cnt%==)
a[v]=;
else
a[v]=;
}
for(int i=;i<=n;i++)
{
if(cnt%==&&a[i]==&&!vis[i])
{
ans[i]=ans[u]+;
q.push(i);
vis[i]=;
}
if(cnt%==&&a[i]==&&!vis[i])
{
ans[i]=ans[u]+;
q.push(i);
vis[i]=;
}
}
cnt++;
}
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=;i<=n;i++)
g[i].clear(),a[i]=;
memset(ans,-,sizeof(ans));
memset(vis,,sizeof(vis));
for(int i=;i<m;i++)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
cin>>s;ans[s]=;
bfs(s);
for(int i=;i<=n;i++)
{
if(i!=s)
cout<<ans[i]<<" ";
}
cout<<endl;
}
return ;
}
HDU 5876 补图 单源 最短路的更多相关文章
- HDU 5637 Transform 单源最短路
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5637 题意: http://bestcoder.hdu.edu.cn/contests/contes ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- 单源最短路_SPFA_C++
当我们需要求一个点到其它所有点的最短路时,我们可以采用SPFA算法 代码特别好写,而且可以有环,但是不能有负权环,时间复杂度是O(α(n)n),n为边数,α(n)为n的反阿克曼函数,一般小于等于4 模 ...
- 【UVA1416】(LA4080) Warfare And Logistics (单源最短路)
题目: Sample Input4 6 10001 3 21 4 42 1 32 3 33 4 14 2 2Sample Output28 38 题意: 给出n个节点m条无向边的图,每条边权都为正.令 ...
- 【算法系列学习】Dijkstra单源最短路 [kuangbin带你飞]专题四 最短路练习 A - Til the Cows Come Home
https://vjudge.net/contest/66569#problem/A http://blog.csdn.net/wangjian8006/article/details/7871889 ...
- 模板C++ 03图论算法 1最短路之单源最短路(SPFA)
3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...
- 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结
刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...
随机推荐
- Oracle分区表例子
分区表 Oracle提供的分区方法有以下几种. 1.范围分区(range) 范围分区是应用范围比较广的表分区方式,它是以列的值的范围来作为分区的划分条 件,将记录存放到列值所在的 range分区中. ...
- 2556. [NOIP2016]玩具谜题
[题目描述] 小南有一套可爱的玩具小人,它们各有不同的职业.有一天,这些玩具小人把小南的眼镜藏了起来.小南发现玩具小人们围成了一个圈,它们有的面朝国内,有的面朝圈外.如下图: 这时singer告诉小南 ...
- jquery 实现 点击把数据移动右侧 点击再次移回到左侧
2018年第一发 希望新的一年和大家一下学习更多知识 JS://把数据左边挪到了右边,再从右边移动回来function moveOption(e1, e2){ $("#" ...
- 【C++】类型转换简述:四种类型转换方式的说明及应用
本文主要简述在C++中四种类型转换的方式:static_cast.reniterpret_cast.const_cast和dynamic_cast. 在介绍C++类型转换方式之前,我们先来看看C语言的 ...
- ubuntu命令行使用ftp客户端
转载 本篇文章主要介绍在Ubuntu 8.10下如何使用功能强大的FTP客户端软件NcFTP. Ubuntu的源里为我们提供了FTP客户端软件NcFTP,可这款工具对新手来说不是很方便.本文介绍的是一 ...
- KVM环境下vCPU绑定到物理CPU
在KVM环境中测试虚拟系统性能时,如果宿主机是有两个CPU socket的硬件,会碰到由于vCPU在不同物理CPU上浮动导致测试RFC2544时出现少量丢包的现象,测试结果非常不稳定.可以将vCPU绑 ...
- html 零散问题
1.iconfont的使用 https://www.cnblogs.com/yujihang/p/6706056.html 2.阴影效果比较 box-shadow:0 0 6px #000 inset ...
- Vue之x-template(2)
将html结构写在一对script标签中,设置type=“x-template” <!DOCTYPE html> <html> <head lang="en&q ...
- java线程池 多线程搜索文件包含关键字所在的文件路径
文件读取和操作类 import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; publi ...
- vue 添加 fastclick的支持
fastclick:处理移动端click事件300毫秒延迟 1.兼容性iOS 3及更高版本的移动SafariiOS 5及更高版本的ChromeAndroid上的Chrome(ICS)Opera Mob ...