- > 动规讲解基础讲解五——最长公共子序列问题
例如:
对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列。
仍然用序列1,3,5,4,2,6,8,7和序列1,4,8,6,7,5
1,4,6,7
请注意: 最长公共子序列不唯一。
请大家用集合的观点来理解这些概念,子序列、公共子序列以及最长公共子序列都不唯一,所以我们通常说一个最长公共子序列,但显然最长公共子序列的长度是一定的。
你首先能想到的恐怕是暴力枚举?那我们先来看看:序列A有 2^n 个子序列,序列B有 2^m 个子序列,如果任意两个子序列一一比较,比较的子序列高达 2^(n+m) 对,这还没有算具体比较的复杂度。
吓着了吧?怎么办?试试使用动态规划算法!
可是,我们事先并不知道t,由定义,我们取最大的一个,因此这种情况下,有LCS(x,y) = max(LCS(x – 1, y) , LCS(x, y – 1))。
看看目前我们已经得到了什么结论:
LCS(x,y) =
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By
这时一个显然的递推式,光有递推可不行,初值是什么呢?
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By
(3) 0 如果x = 0或者y = 0
到此我们求出了计算最长公共子序列长度的递推公式。我们实际上计算了一个(n + 1)行(m + 1)列的表格(行是0..n,列是0..m),也就这个二维度数组LCS(,)。
输入序列A, B长度分别为n,m,计算二维表 LCS(int,int):
for x = to n do
for y = to m do
if (x == || y == ) then
LCS(x, y) =
else if (Ax == By) then
LCS(x, y) = LCS(x - ,y - ) +
else
LCS(x, y) = ) max(LCS(x – , y) , LCS(x, y – ))
endif
endfor
endfor
现在问题来了,我们如何得到一个最长公共子序列而仅仅不是简单的长度呢?其实我们离真正的答案只有一步之遥!
这对应L(x,y) = L(x,- 1 y- 1)末尾接上Ax
这对应L(x,y)= L(x – 1, y)
(2.2) LCS(x, y – 1) 如果Ax ≠ By且LCS(x – 1, y) <LCS(x, y – 1)
这对应L(x,y) = L(x, y – 1)
这对应L(x,y)=空序列
神奇吧?又一个类似的递推公式。可见我们在计算长度LCS(x,y)的时候只要多记录一些信息,就可以利用这些信息恢复出一个最长公共子序列来。就好比我们在迷宫里走路,走到每个位置的时候记录下我们时从哪个方向来的,就可以从终点回到起点一样。
今天对LCS的讲解就到这里,聪明的你是不是已经蠢蠢欲动要AC问题啦? 心动不如行动,赶快吧。
#include<iostream>
#include<cstring>
using namespace std;
int f[][];
string a,b,z;
int main()
{
while(cin>>a>>b)
{
memset(f,,sizeof(f));
int l1=a.size();
int l2=b.size();
a=' '+a;
b=' '+b;
for(int i=;i<=l1;i++)
for(int j=;j<=l2;j++)
if(a[i]==b[j])
f[i][j]=f[i-][j-]+;
else
f[i][j]=max(f[i-][j],f[i][j-]);
int i=l1,j=l2;
while(i&&j)
{
if(a[i]==b[j])
{
z=a[i]+z;
i--;j--;
}
else
{
if(f[i-][j]>=f[i][j-]) i--;
else j--;
}
}
cout<<z;
}
}
如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88
- > 动规讲解基础讲解五——最长公共子序列问题的更多相关文章
- 最长公共子序列lcs 51nod1006
推荐参考博客:动态规划基础篇之最长公共子序列问题 - CSDN博客 https://blog.csdn.net/lz161530245/article/details/76943991 个人觉得上面 ...
- LCS(最长公共子序列)动规算法正确性证明
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下, ...
- HDU 1159 Common Subsequence (动规+最长公共子序列)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- DP_最长公共子序列/动规入门
学自:https://open.163.com/movie/2010/12/L/4/M6UTT5U0I_M6V2U1HL4.html 最长公共子序列:(本文先谈如何求出最长公共子序列的长度,求出最长公 ...
- POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)
Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44464 Accepted: 18186 ...
- 动态规划_基础_最长公共子序列_多种方法_递归/dp
D: 魔法少女资格面试 题目描述 众所周知,魔法少女是一个低危高薪职业.随着近年来报考魔法少女的孩子们越来越多,魔法少女行业已经出现饱和现象!为了缓和魔法少女界的就业压力,魔法少女考核员丁丁妹决定增加 ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...
- 准备NOIP2017 最长公共子序列(模版)
一些概念: (1)子序列: 一个序列A = a1,a2,--an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列.例如: 对序列 1,3,5, ...
随机推荐
- 解决前后端分离的“两次请求”引出的Web服务器跨域请求访问问题的解决方案
在前后端分离的项目中,前端和后端可能是在不同的服务器上,也可以是Docker上,那就意味着前端请求后端Restful接口时,存在跨域情况. 后端在做了通用的跨域资源共享CORS设置后,前端在做ajax ...
- 用Movie显示gif(2)GifView
1,类 import android.annotation.SuppressLint; import android.content.Context; import android.content.r ...
- Linux软件管理和安装
软件安装和管理软件包1.bin文件.bin2.rpm包3.源码压缩包 安装软件的步骤: 1.检查是否已经安装 rpm -qa | grep jdk 2.下载软件包 3.安装 依赖 rpm 包,已经编译 ...
- android cmd adb命令安装和删除apk应用
copy自http://blog.csdn.net/xpsharp/article/details/7289910 1. 安装Android应用程序 1) 启动Android模拟器 2) adb in ...
- Web性能测试术语
并发用户: 并发一般分为2种情况.一种是严格意义上的并发,即所有的用户在同一时刻做同一件事情或者操作,这种操作一般指做同一类型的业务.比如在信用卡审批业 务中,一定数目的用户在同一时刻对已经完成的审批 ...
- 带有空格或tab的字符串的判断
class test { public static void main(String[] args) { String a = " "; //带有空格的字符串 if ( a.is ...
- jsp学习笔记 - 内置对象 session
1.session 主要用来用户的登录和注销 设置用户名,获取用户名 session.setAttribute("username","johnson"); s ...
- canvas一周一练 -- canvas绘制立体文字(2)
运行效果: <!DOCTYPE html> <html> <head> </head> <body> <canvas id=" ...
- 探索 DWARF 调试格式信息
https://www.ibm.com/developerworks/cn/aix/library/au-dwarf-debug-format/ 简介 DWARF(使用有属性的记录格式进行调试 )是许 ...
- map 用法
map 是一种关联容器, 提供一对一的关联, 关联的形式为: KEY----VALUE 关键字不重复.multimap与map类似,但是允许关键字重复 即:关键字和与之对应的值 关键字起到索 ...