题目大意:有一个无限长的一维的棋盘,棋盘上N个格子放置着棋子。两个人轮流操作,每次操作能选择其中一个棋子向左移动,但不能越过其它棋子或者两枚棋子放在同一格中,最后不能操作的人算输,问先手是否必胜?

思路:就是裸的阶梯博弈(staircase nim)方法也很简单。首先每个棋子能向右移动的距离是有限的,最多到前一个棋子处就停止了,比如第一个sample :1 2 3 每个棋子都不能移动就是 0 0 0 第二个sample: 1 5 6 7 9 12 14 17 就是0 3 0 0 1 2 1 2 这样每次移动一枚棋子向左n步,相当于把对应第二排的那个数据减去n,那个数据右边一个数加上n
这样问题就转变成了:有n堆石头,每次可以从一堆中拿出一些或全部石头给相邻的右边的一堆石头,或者最后一堆减去一些或全部石头,谁不能操作谁输,问先手是否必胜?
关于这个问题的结论和证明网上多如牛毛,结论是:假设从最后一堆石头开始与上一堆相间的石头数的异或和为P,P为0时先手必败反之必胜。比如a1,a2,a3,a4,a5   P的值就是a5 xor a3  xor a1

证明无非就是说明当不为平衡态时必然存在操作使局面进入平衡态,而局面已然是平衡态时任何操作都会破坏平衡。这里不再累述。说一下对这个问题的一些直观认识:为了叙述方便,可以把与最后一堆石头相间的石头称为有用堆(这里是我生造的一个词)而其它堆称为无用

堆。

□■□■□■□■□■□

如图空心方块表示有用堆,实心方块表示无用堆,显然把无用堆的石头放到有用堆的操作都是没有意义的,因为这次从无用堆放进多少块石头到有用堆,下一次操作就能将这些运进来的石头扔给下一个无用堆或者扔掉(最后一堆石头),而有用堆石头的序列分毫未变,因此只需看有用堆的石头情况即可。而有用堆的石头放进无用堆相当于扔掉的操作,因为刚才已经证明无用堆中的石头是不起作用毫无意义的,这样就将问题化为了有用堆的NIM游戏!!因此只需计算有用堆的异或和就能计算出先手的胜负情况

//poj1704

#include<cstdio>

#include<string.h>

#include<iostream>

using namespace std;

int a[1009]={0};

void qsort(int l,int r)

{

int i=l,j=r,mid=a[(l+r)>>1],temp;

while(i<j)

{

while(a[i]<mid)i++;while(a[j]>mid)j--;

if(i<=j)

{

temp=a[i];a[i]=a[j];a[j]=temp;

i++;j--;

}

}

if(i<r)qsort(i,r);

if(l<j)qsort(l,j);

}

int main()

{

int n,t,chess[1009]={0};

scanf("%d",&t);

while(t--)

{

int x=0,last=0;

scanf("%d",&n);

for(int i=1;i<=n;i++)scanf("%d",&a[i]);

qsort(1,n);

for(int i=1;i<=n;i++)

{

chess[i]=a[i]-last-1;

last=a[i];

}

for(int i=n;i>=1;i=i-2)

x=x^chess[i];

if (x!=0)printf("Georgia will win\n");else printf("Bobwill win\n");

}

return 0;

}

调试小结:3次WA 原因:未看清棋子顺序不是从小到大!!

Poj1704:staircase nim【博弈】的更多相关文章

  1. POJ1704 Georgia and Bob(Nim博弈变形)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14312   Accepted: 4840 ...

  2. Nim博弈&&POJ1704

    Nim博弈 题目 有n堆物品,两人轮流取,每次取某堆中不少于1个,先取完者胜. 分析 经典问题,该问题的策略也成为了许多问题的基础. 要判断游戏的胜负只需要异或运算就可以了,有以下结论: $a_1 \ ...

  3. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  4. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  5. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  6. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  7. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  8. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  9. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

随机推荐

  1. 在input标签里只能输入数字

    <input type='text' onkeyup="(this.v=function(){this.value=this.value.replace(/[^0-9-]+/,''); ...

  2. spoj GCJ1C09C Bribe the Prisoners

    题目链接: http://www.spoj.com/problems/GCJ1C09C/ 题意: In a kingdom there are prison cells (numbered 1 to  ...

  3. IE8 window.open 不支持此接口 的问题解决

    在使用vs2010调试代码时,突然出现 window.open 不支持此接口的提示,开始认为是不是vs的问题,后来上网查询说是系统问题.我不想重装系统,之后发现是IE的问题,使用其他浏览器浏览系统不会 ...

  4. sccm系统更新补丁后服务无法正常启动

    更新完补丁后这几个应用无法启动,最后发现计算机丢失msvcp120.dll 文件,查询相关资料发现安装vcredist 2013 从官网下载Visual C++ Redistributable Pac ...

  5. H3C S5024P交换机 H3C AR28-31路由器命令

    H3C S5024P交换机 H3C AR28-31路由器命令 交换机命令 各个视图的切换: 注意命令要在相应的视图下执行 在用户视图下键入quit命令可以断开与交换机的连接.在其它视图中键入quit命 ...

  6. (转)为Spring集成的Hibernate配置二级缓存

    http://blog.csdn.net/yerenyuan_pku/article/details/52896195 前面我们已经集成了Spring4.2.5+Hibernate4.3.11+Str ...

  7. (转)使用Spring的注解方式实现AOP入门

    http://blog.csdn.net/yerenyuan_pku/article/details/52865330 首先在Eclipse中新建一个普通的Java Project,名称为spring ...

  8. About App Sandbox

    沙盒是在受限的安全环境中运行应用程序的一种做法,这种做法是要限制授予应用程序的代码访问权限. 沙盒技术提供对资源的严格控制,沙盒通过限制对内存.系统文件和设置的访问,沙盒可以让企业可通过执行潜在恶意代 ...

  9. node的影响及前后端之争

    作者:知乎用户链接:https://www.zhihu.com/question/59578433/answer/326694511来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  10. RN传参的问题

    RN父组件通过props属性给子组件传参,假设参数 target={target} 子组件在render函数里 let { target } = this.props; 如果子组件有个 FlatLis ...