Cooking Schedule Problem Code: SCHEDULE

Chef is a well-known chef, and everyone wishes to taste his dishes.

As you might know, cooking is not an easy job at all and cooking everyday makes the chef very tired. So, Chef has decided to give himself some days off.

Chef has made a schedule for the next N days: On i-th day if Ai is equal to 1 then Chef is going to cook a delicious dish on that day, if Ai is equal to 0 then Chef is going to rest on that day.

After Chef made his schedule he discovered that it's not the best schedule, because there are some big blocks of consecutive days where Chef will cook which means it's still tiring for Chef, and some big blocks of consecutive days where Chef is going to rest which means chef will be bored doing nothing during these days.

Which is why Chef has decided to make changes to this schedule, but since he doesn't want to change it a lot, he will flip the status of at most K days. So for each day which Chef chooses, he will make it 1 if it was 0 or he will make it 0 if it was 1.

Help Chef by writing a program which flips the status of at most K days so that the size of the maximum consecutive block of days of the same status is minimized.

Input

The first line of the input contains an integer T denoting the number of test cases.

The first line of each test case contains two integers: N denoting the number of days and K denoting maximum number of days to change.

The second line contains a string of length N , of which the i-th character is 0 if chef is going to rest on that day, or 1 if chef is going to work on that day

Output

For each test case, output a single line containing a single integer, which is the minimum possible size of maximum block of consecutive days of the same status achievable.

Constraints

  • 1 ≤ T ≤ 11,000
  • 1 ≤ N ≤ 106
  • The sum of N in all test-cases won't exceed 106.
  • 0 ≤ K ≤ 106
  • 0 ≤ Ai ≤ 1

Subtasks

  • Subtask #1 (20 points): N ≤ 10
  • Subtask #2 (80 points): Original Constraints

Example

Input:

2
9 2
110001111
4 1
1001
Output:

2
2
思路:
用大根堆存连续相同序列的长度,同时存下标号及切割次数(为了在最长的连续序列相同的前提下先切切割次数少的,因此要先用一个大一些的数代表切割0次,每切割一次这个数减1),用另一个数组记录这个序列的最初长度。每次切割长度最长的序列,长度变成最初的长度/(切割次数+1),再次加进堆(只需加一段即可)。直到剩下的最长长度只有2。对于小于2的情况,特殊处理即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int _;
int n,k,a[];
char c[];
priority_queue <pair<int,pair<int,int>>> q;
int main()
{
scanf("%d",&_);
while (_--)
{
scanf("%d%d",&n,&k);
scanf("%s",c);
while (!q.empty()) q.pop();
int tot=,cnt=;;
int i;
for (i=;i<n;i++)
if (c[i]==c[i-]) tot++;
else
{
//cout<<tot<<endl;
q.push({tot,{,cnt}});
a[cnt]=tot;
cnt++;
tot=;
}
q.push({tot,{,cnt}});
a[cnt]=tot;
cnt++;
if (q.top().first==)
{
puts("");
continue;
}
char p='';
tot=;
int len=strlen(c);
for (i=;i<len;i++)
{
if (c[i]!=p) tot++;
if (p=='') p=''; else p='';
}
if (tot<=k)
{
puts("");
continue;
}
p='';
tot=;
for (i=;i<len;i++)
{
if (c[i]!=p) tot++;
if (p=='') p=''; else p='';
}
if (tot<=k)
{
puts("");
continue;
}
//cout<<"hhhhhhhhhh"<<endl;
//cout<<q.top()<<endl;
int x;
while (k--)
{
x=q.top().first;
if (x<=) break;
int ix=q.top().second.second;
int nval=a[ix];
int id=q.top().second.first;
id--;
int im=-id;
x=nval/(im+);
q.pop();
q.push({x,{id,ix}});
}
printf("%d\n",q.top().first);
}
return ;
}

Cooking Schedule Problem Code: SCHEDULE(优先队列)的更多相关文章

  1. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. HDOJ 1534 Schedule Problem 差分约束

    差分约数: 求满足不等式条件的尽量小的值---->求最长路---->a-b>=c----> b->a (c) Schedule Problem Time Limit: 2 ...

  3. Maker's Schedule, Manager's Schedule

    http://www.paulgraham.com/makersschedule.html manager's schedule 随意性强,指随时安排会面,开会等活动的 schedule; maker ...

  4. POJ 3553 Task schedule【拓扑排序 + 优先队列 / 贪心】

    Task schedule Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 515 Accepted: 309 Special J ...

  5. ZOJ 1455 Schedule Problem(差分约束系统)

    // 题目描述:一个项目被分成几个部分,每部分必须在连续的天数完成.也就是说,如果某部分需要3天才能完成,则必须花费连续的3天来完成它.对项目的这些部分工作中,有4种类型的约束:FAS, FAF, S ...

  6. Schedule Problem spfa 差分约束

    题意:有n个任务,给出完成n个任务所需时间,以及一些任务安排.任务安排有四种: FAS a b:任务a需在任务b开始后完成. FAF a b:任务a需在任务b完成后完成. SAF a b:任务a需在任 ...

  7. HDU-1534 Schedule Problem

    四种约束条件..照做就行了.. 最长路建图. #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  8. lr11.0负载测试 real-world schedule 与basic schedule的区别是什么

    real-world schedule 是真实场景模式  可以通过增加ACTION来增加多个用户 basic schedule 是我们以前用的 经典模式  只能设置一次负载的上升和下降

  9. Holes in the text Add problem to Todo list Problem code: HOLES

    import sys def count_holes(letter): hole_2 = ['A', 'D', 'O', 'P', 'Q', 'R'] if letter == 'B': return ...

随机推荐

  1. std::map插入已存在的key时,key对应的内容不会被更新

    std::map插入已存在的key时,key对应的内容不会被更新,如果不知道这一点,可能会造成运行结果与预期的不一致 “Because element keys in a map are unique ...

  2. sybase sql anywhere 5.0 安装后sybase central中无法打开视图等的解决办法

    无法打开的原因初步分析要用英文版的xp,后来在如下处发现问题,是sql anywhere的版本太旧了, 可能没有使用Unicode编码,设置一下如下选项可以解决问题.

  3. js 输出某年某月某日的天数/判断闰年

    console.log(getDays(2017,12,12)); function getDays(year,month,day){ var arr = [31,28,31,30,31,30,31, ...

  4. 7-Java-C(四平方和)

    题目描述: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^2 + ...

  5. DROP TRIGGER - 删除一个触发器定义

    SYNOPSIS DROP TRIGGER name ON table [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP TRIGGER 将删除所有对一个现存触发器 ...

  6. 样式化复选框(Styling Checkbox)

    原理:https://www.tuicool.com/articles/y67jee 表现:http://www.freejs.net/demo/381/index.html https://www. ...

  7. 尺取法 || emmmm

    给定两个上升的数组,一个数组任取一个数,求两个数差的min 尺取法emm 也不知道对不对 #include <stdio.h> #include <stdlib.h> #def ...

  8. poj1681 Painter's Problem

    题目描述: 和那道关灯差不多,求最少涂几次. 题解: 高消,然后深搜枚举自由元更新答案. 貌似这道题没卡贪心但是其他题基本都卡了. 比如$Usaco09Nov$的$lights$ 代码: #inclu ...

  9. HUST软件与微电子学院第八届程序设计竞赛-小乐乐下象棋

    这题其实很简单,我们可以用一个bfs搜索出所有的,小于k步的,到不同点不同步数的方案数. 我们首先初始化,走到(0,0)点的时候,我们把步数设置为0,但是方法数设置为1,这是因为我们走零步,到一个点, ...

  10. 360 Atlas中间件安装及使用

    1.下载Atlas wget https://github.com/Qihoo360/Atlas/releases/download/2.2.1/Atlas-2.2.1.el6.x86_64.rpm ...