bzoj3566
3566: [SHOI2014]概率充电器
Time Limit: 40 Sec Memory Limit: 256 MB
Submit: 982 Solved: 422
[Submit][Status][Discuss]
Description
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!
”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?
Input
第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。
Output
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数
Sample Input
1 2 50
1 3 50
50 0 0
Sample Output
HINT
对于 100%的数据,n≤500000,0≤p,qi≤100。
Source
#include<bits/stdc++.h>
using namespace std;
const int N = ;
struct edge {
int nxt, to; double p;
} e[N << ];
int n, cnt = ;
int head[N];
double p[N], f[N], g[N], q[N];
void link(int u, int v, int p)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].to = v;
e[cnt].p = (double) p / ;
}
void dfs1(int u, int last)
{
f[u] = 1.0 - q[u];
for(int i = head[u]; i; i = e[i].nxt) if(e[i].to != last)
{
dfs1(e[i].to, u); p[e[i].to] = e[i].p;
f[u] *= f[e[i].to] + ( - e[i].p) * ( - f[e[i].to]);
}
}
void dfs2(int u, int last)
{
if(!last) g[u] = ;
else
{
double t = g[last] * f[last] / (f[u] + ( - f[u]) * ( - p[u]));
g[u] = t + ( - t) * ( - p[u]);
}
for(int i = head[u]; i; i = e[i].nxt) if(e[i].to != last)
dfs2(e[i].to, u);
}
int main()
{
scanf("%d", &n);
for(int i = ; i < n; ++i)
{
int u, v, p; scanf("%d%d%d", &u, &v, &p);
link(u, v, p); link(v, u, p);
}
for(int i = ; i <= n; ++i) scanf("%lf", &q[i]), q[i] /= ;
dfs1(, ); dfs2(, );
double ans = ;
for(int i = ; i <= n; ++i) ans += - f[i] * g[i];
printf("%.6lf\n", ans);
return ;
}
bzoj3566的更多相关文章
- BZOJ3566 SHOI2014概率充电器(动态规划+概率期望)
设f[i]为i在子树内不与充电点连通的概率.则f[i]=(1-pi)·∏(1-qk+qk·f[k]). 然后从父亲更新答案.则f[i]=f[i]·(1-qfa+qfa*f[fa]/(1-qfa+qfa ...
- 【BZOJ3566】概率充电器(动态规划)
[BZOJ3566]概率充电器(动态规划) 题面 BZOJ Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: "采用全新纳米级加工 ...
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- [BZOJ3566][SHOI2014]概率充电器(概率DP)
题意:树上每个点有概率有电,每条边有概率导电,求每个点能被通到电的概率. 较为套路但不好想的概率DP. 树形DP肯定先只考虑子树,自然的想法是f[i]表示i在只考虑i子树时,能有电的概率,但发现无法转 ...
- 【BZOJ3566】[SHOI2014]概率充电器 期望+树形DP
[BZOJ3566][SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线 ...
- BZOJ3566 : [SHOI2014]概率充电器
选个根把无根树转化成有根树, 设f[i]表示i不通电的概率 则 答案为对于枚举树根root进行DP后1-f[root]的和 直接算是O(n^2)的,但是n有500000,所以不能过. 对于这样一棵以1 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
随机推荐
- Python数据类型之数字类型
整数 在Python中,整数可以执行 加(+)减(-)乘(*)除(/) 运算. 1 + 2 3 - 2 2 * 3 3 / 2 # 1.5 在控制台,Python直接返回运算结果. Python中也可 ...
- pip 打包项目配置库
打包项目中配置库(filename为文件名,可修改) pip freeze > filename.txt 安装配置文件中所有的库包 pip install -r filename.txt 如提示 ...
- NYOJ-568/1012//UVA-12299RMQ with Shifts,线段树单点更新+区间查询
RMQ with Shifts 时间限制:1000 ms | 内存限制:65535 KB 难度:3 -> Link1 <- -> Link2 <- 以上两题题意是一样 ...
- css3 & background & background-image
css3 & background & background-image https://developer.mozilla.org/en-US/docs/Web/CSS/backgr ...
- poj 3648 2-sat 输出任意一组解模板
转载地址:http://blog.csdn.net/qq172108805/article/details/7603351 /* 2-sat问题,题意:有对情侣结婚,请来n-1对夫妇,算上他们自己共n ...
- 安装K/3 Cloud过程中发现的两个新问题。
卸载掉K/3 Cloud然后重装时出现下面的错误提示: 可能原因: 1.安装目录下的Setup.exe会检查操作系统版本.有些操作系统可能是被串改过注册信息,所以取不到版本信息(有些是因为盗版的原因) ...
- java中使用Protobuf的实例(Demo)
由于Protobuf受到推崇,故尝试采用protobuf来摒弃传统的xml进行传输数据. 首先,需要下载的关于Protobuf的文件: 1.到http://code.google.com/p/prot ...
- SOJ 3300_Stockholm Coins
[题意]给n个数,求一个数,使这个数能且只能由(n个数每个至少出现一次)表示.输出满足条件的最小的数. [分析](完全背包)如果有满足条件的最小的数,那么这个数只能是这n个数的和total,通过记录每 ...
- CLR GC
一.垃圾回收算法 每个应用程序都包含一组根(root),每个根都是一个存储位置,他要么为null,要么指向托管堆的一个对象,类型中定义的静态字段.局部变量.方法参数等都会被认为是根. 垃圾回收器(GC ...
- 使用异步委托执行线程(delegate)
由于异步委托产生的线程与应用程序主线程是分开执行的,若主线程要获取异步委托线程的结果,则主线程需要等待异步委托的执行结果. BeginInvoke是Delegate类型的一个方法,它的返回类型为IAs ...