Codeforces_733C
1 second
256 megabytes
standard input
standard output
There was an epidemic in Monstropolis and all monsters became sick. To recover, all monsters lined up in queue for an appointment to the only doctor in the city.
Soon, monsters became hungry and began to eat each other.
One monster can eat other monster if its weight is strictly greater than the weight of the monster being eaten, and they stand in the queue next to each other. Monsters eat each other instantly. There are no monsters which are being eaten at the same moment. After the monster A eats the monster B, the weight of the monster A increases by the weight of the eaten monster B. In result of such eating the length of the queue decreases by one, all monsters after the eaten one step forward so that there is no empty places in the queue again. A monster can eat several monsters one after another. Initially there were n monsters in the queue, the i-th of which had weight ai.
For example, if weights are [1, 2, 2, 2, 1, 2] (in order of queue, monsters are numbered from 1 to 6 from left to right) then some of the options are:
- the first monster can't eat the second monster because a1 = 1 is not greater than a2 = 2;
- the second monster can't eat the third monster because a2 = 2 is not greater than a3 = 2;
- the second monster can't eat the fifth monster because they are not neighbors;
- the second monster can eat the first monster, the queue will be transformed to [3, 2, 2, 1, 2].
After some time, someone said a good joke and all monsters recovered. At that moment there were k (k ≤ n) monsters in the queue, the j-th of which had weight bj. Both sequences (a and b) contain the weights of the monsters in the order from the first to the last.
You are required to provide one of the possible orders of eating monsters which led to the current queue, or to determine that this could not happen. Assume that the doctor didn't make any appointments while monsters were eating each other.
The first line contains single integer n (1 ≤ n ≤ 500) — the number of monsters in the initial queue.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the initial weights of the monsters.
The third line contains single integer k (1 ≤ k ≤ n) — the number of monsters in the queue after the joke.
The fourth line contains k integers b1, b2, ..., bk (1 ≤ bj ≤ 5·108) — the weights of the monsters after the joke.
Monsters are listed in the order from the beginning of the queue to the end.
In case if no actions could lead to the final queue, print "NO" (without quotes) in the only line.
Otherwise print "YES" (without quotes) in the first line. In the next n - k lines print actions in the chronological order. In each line print x — the index number of the monster in the current queue which eats and, separated by space, the symbol 'L' if the monster which stays the x-th in the queue eats the monster in front of him, or 'R' if the monster which stays the x-th in the queue eats the monster behind him. After each eating the queue is enumerated again.
When one monster eats another the queue decreases. If there are several answers, print any of them.
6
1 2 2 2 1 2
2
5 5
YES
2 L
1 R
4 L
3 L
5
1 2 3 4 5
1
15
YES
5 L
4 L
3 L
2 L
5
1 1 1 3 3
3
2 1 6 题意:n个数,如果一个数num[i]大于它前面的数num[i-1],那么num[i]可以吞掉num[i-1],整个数组的长度减1;如果num[i]>num[i+1],那么num[i]可以吞掉num[i+1],数组长度减1。
给定一个最终状态的数组,问初始状态能否转化为最终状态,并输出路径。 思路:若能转化,那么初态数组中的一段连续的数可以合并成最终状态数组中对应的一个数。找到一个最大的且位置合适的数,如果左边的数比它小,那么从这个数吃到最左,再吃到最右;
如果右边的数比它小,那么从这个数吃到最右边,再吃到最左边。这种模拟有很多细节要注意,wa哭了。。。 注:
1.可能初态中没有一段数对应终态中的一个数。
2.有可能匹配完了过后,初态中还有数。
3.直接向右吃时,要注意此时最大的数一定要是最右边的。
4.处理完一段后,后面的段的坐标要相应的变化。 代码跟屎一样乱。。。
#include<iostream>
#include<cstdio>
using namespace std;
#define N 505 struct Segment
{
int l,r;
int maxn;
}seg[N];
int numb[N],numc[N];
int main()
{
int nb,nc;
while(scanf("%d",&nb)!=EOF)
{
for(int i=;i<=nb;i++)
scanf("%d",&numb[i]);
scanf("%d",&nc);
for(int i=;i<=nc;i++)
scanf("%d",&numc[i]);
int cu=,cnt=,maxn=,mloc=,head=,tail=,sum=,flag=;
for(int i=;i<=nb;i++)
{
if(cu>nc)
{
flag=;
break;
}
if(numb[i]>maxn)
{
mloc=i;
maxn=numb[i];
}
sum+=numb[i];
tail++;
if(sum==numc[cu])
{
Segment s;
s.l=head;
s.r=tail-;
s.maxn=mloc;
seg[cnt++]=s;
head=tail=i+;
maxn=;
cu++;
sum=;
}
}
if(cu<nc+)
flag=;
int eat[N];
char eatc[N];
int cntt=,bef=;
for(int i=;i<cnt;i++)
{
if(flag==)
break;
if(seg[i].l==seg[i].r)
continue;
int loc=seg[i].maxn;
if(loc->=seg[i].l&&numb[loc-]<numb[loc])
{
for(int j=loc-bef;j>seg[i].l-bef;j--)
{
eat[cntt]=j;
eatc[cntt++]='L';
}
for(int j=seg[i].l-bef;j<seg[i].l-bef+seg[i].r-loc;j++)
{
eat[cntt]=seg[i].l-bef;
eatc[cntt++]='R';
}
}
else if(loc+<=seg[i].r&&numb[loc+]<=numb[loc])
{
while(numb[loc+]==numb[loc])
{
loc++;
if(loc==seg[i].r)
break;
}
if(numb[loc-]>=numb[loc]&&loc==seg[i].r)
{
flag=;
break;
}
for(int j=loc-bef;j<seg[i].r-bef;j++)
{
eat[cntt]=loc-bef;
eatc[cntt++]='R';
} for(int j=loc-bef;j>seg[i].l-bef;j--)
{
eat[cntt]=j;
eatc[cntt++]='L';
}
}
else
{
flag=;
break;
}
bef=seg[i].r-i;
}
if(flag)
{
printf("YES\n");
for(int i=;i<cntt;i++)
{
printf("%d %c\n",eat[i],eatc[i]);
}
}
else
printf("NO\n");
}
return ;
}
Codeforces_733C的更多相关文章
随机推荐
- AWR and ADDM
The Automatic Workload Repository Oracle collect a vast amount of statistics regarding the performan ...
- Docker创建PHP镜像
Step: 1. 创建Dockerfile FROM php:7.0-apache RUN chmod -R 755 /var/www 2. 创建镜像 docker build -t docker_n ...
- 《WF in 24 Hours》读书笔记 - Hour 2(1) - 第一个Workflow程序
创建第一个Workflow项目 1. 创建Workflow项目 – 选择Workflow Console Application 2. 添加CodeActivity 3. 打开CodeActivity ...
- 链表中倒数第N个元素——剑指Offer
https://www.nowcoder.net/practice/529d3ae5a407492994ad2a246518148a?tpId=13&tqId=11167&tPage= ...
- ViewPager + Handler 实现的图片自己主动轮播
首先上图看效果 我也是在网上看各种大牛们做的效果,非常多都是自己定义重写了一些控件来实现这个效果的. 我把当中的一位大牛写的ViewPager的效果加上了Handler实现了自己主动轮播效果.在此做个 ...
- 装饰者模式的学习(c#) EF SaveChanges() 报错(转载) C# 四舍五入 保留两位小数(转载) DataGridView样式生成器使用说明 MSSQL如何将查询结果拼接成字符串 快递查询 C# 通过smtp直接发送邮件 C# 带参访问接口,WebClient方式 C# 发送手机短信 文件 日志 写入 与读取
装饰者模式的学习(c#) 案例转自https://www.cnblogs.com/stonefeng/p/5679638.html //主体基类 using System;using System.C ...
- DCS实践干货:使用Redis实现分布式锁
场景介绍 很多互联网场景(如商品秒杀,论坛回帖盖楼等),需要用加锁的方式,以对某种资源进行顺序访问控制.如果应用服务集群部署,则涉及到对分布式应用加锁.当前分布式加锁主要有三种方式:(磁盘)数据库.缓 ...
- luogu2744 量取牛奶
题目大意 给出一个整数集合$A$,总数$N$,规定一个整数序列$\{a_n\}, \forall i, a_i\in A$满足条件:存在一个正整数序列$\{k_n\}$,使得$\sum_{i=1}^n ...
- git reset --hard 回滚以后 以后怎么再回去?
恢复的过程很简单: 通过git log -g命令来找到需要恢复的信息对应的commitid,可以通过提交的时间和日期来辨别,找到执行reset --hard之前的那个commit对应的commitid ...
- TS流解析 四
一 从TS流开始 数字电视机顶盒接收到的是一段段的码流,我们称之为TS(Transport Stream,传输流),每个TS流都携带一些信息,如Video.Audio以及我们需要学习的PAT.PMT等 ...