瞎搞居然1A,真是吃鲸

n的范围只有聪明人能看见……建议读题3遍

首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123

对于选一个的直接计数即可;

对于选两个的,\( A(x)^2 \),然后注意这里两个选一样的是不合法的,各出现了一次,所以减掉,然后这里是有顺序的,所以最后再除以2(就是(1,2)和(2,1)算两次);

对于选三个的,\( A(x)^3 \),然后去掉不合法的,设D(x)为每个斧头选两次的生成函数(也就是价格*2),然后A(x)*D(x)就表示前两个斧头重复选取的方案,注意是前两个,然后类似的情况还有后两个斧头重复选取的方案,第一个第三个斧头重复选取的方案,所以每一项*3,答案减掉这个多项式,然后发现三个斧头都选一样的情况各被算了三遍,所以再加上即可

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=500005;
int n,m,lm,bt,ans[N],re[N],x[N],q[N];
struct cd
{
double a,b;
cd(double A=0,double B=0)
{
a=A,b=B;
}
cd operator + (const cd &x) const
{
return cd(a+x.a,b+x.b);
}
cd operator - (const cd &x) const
{
return cd(a-x.a,b-x.b);
}
cd operator * (const cd &x) const
{
return cd(a*x.a-b*x.b,a*x.b+b*x.a);
}
}a[N],b[N],c[N],d[N],e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void dft(cd a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
cd wi=cd(cos(M_PI/i),f*sin(M_PI/i));
for(int k=0;k<lm;k+=(i<<1))
{
cd w=cd(1.0,0.0),x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
w=w*wi;
}
}
}
if(f==-1)
for(int i=0;i<lm;i++)
a[i].a/=lm;
}
void fft(cd a[],cd b[])
{
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=a[i]*b[i];
dft(a,-1);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
x[i]=read(),m=max(m,3*x[i]);
a[x[i]].a+=1,b[x[i]].a+=1,c[x[i]].a+=1,d[x[i]*2].a+=1,e[x[i]].a+=1;
ans[x[i]]+=1;
}
for(bt=0;(1<<bt)<=2*m;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
fft(a,b);
for(int i=0;i<lm;i++)
q[i]=int(a[i].a+0.5);
for(int i=1;i<=n;i++)
q[2*x[i]]-=1;
for(int i=0;i<lm;i++)
q[i]/=2,ans[i]+=q[i];
fft(c,a);
fft(d,e);
for(int i=0;i<lm;i++)
q[i]=3*(int)(d[i].a+0.5);
for(int i=1;i<=n;i++)
q[3*x[i]]-=2;
for(int i=0;i<lm;i++)
ans[i]+=((int)(c[i].a+0.5)-q[i])/6;
for(int i=0;i<lm;i++)
if(ans[i])
printf("%d %d\n",i,ans[i]);
return 0;
}

bzoj 3771: Triple【生成函数+FFT+容斥原理】的更多相关文章

  1. BZOJ 3771: Triple(生成函数 FFT)

    Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 911  Solved: 528[Submit][Status][Discuss] Description ...

  2. 【BZOJ3771】Triple 生成函数 FFT 容斥原理

    题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...

  3. BZOJ.3771.Triple(母函数 FFT 容斥)

    题目链接 \(Description\) 有\(n\)个物品(斧头),每个物品价值不同且只有一件,问取出一件.两件.三件物品,所有可能得到的价值和及其方案数.\((a,b),(b,a)\)算作一种方案 ...

  4. [BZOJ 3771] Triple(FFT+容斥原理+生成函数)

    [BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...

  5. BZOJ 3771: Triple [快速傅里叶变换 生成函数 容斥原理]

    题意:n个物品,可以用1/2/3个不同的物品组成不同的价值,求每种价值有多少种方案(顺序不同算一种) [生成函数]: 构造这么一个多项式函数g(x),使得n次项系数为a[n]. 普通型生成函数用于解决 ...

  6. bzoj 3771 Triple FFT 生成函数+容斥

    Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 847  Solved: 482[Submit][Status][Discuss] Desc ...

  7. BZOJ 3771 Triple FFT+容斥原理

    解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...

  8. 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)

    传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...

  9. bzoj 3771 Triple——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...

随机推荐

  1. HBase技术简介

    一.HBase简介 HBase – Hadoop Database,是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群. ...

  2. <bgsound> - 背景音乐

    摘要 项目 说明 形式 <bgsound src="..."> 支持 e2+ 标签省略 开始标签:必须,结束标签:无 ■ 说明 bgsound 是 background ...

  3. HDU 4334 Trouble(哈希|线性查找)

    给定五个集合.问是否能从五个集合各取一个元素,使得元素之和为0. 这道题有两种做法,一种是哈希,然而之前没写过哈希.....比赛后从大神那copy了一份. 这里说还有一种. 对于这五个集合分为三组.1 ...

  4. 汉澳sinox不受openssl心血漏洞影响并分析修复其漏洞代码

    OpenSSL 心血(HeartBleed)漏洞 是openssl 在 2014-04-07 发布的重大安全漏洞(CVE-2014-0160)这个漏洞使攻击者可以从server内存中读取64 KB的数 ...

  5. ActiveMQ(三) 转

    package pfs.y2017.m11.mq.activemq.demo03; import javax.jms.Connection; import javax.jms.ConnectionFa ...

  6. IconTabPageIndicator

    https://github.com/msdx/IconTabPageIndicator

  7. mysql的DUPLICATE KEY

    经常遇到这样的情景,向一个表里插入一条数据,如果已经存在就更新一下,用程序实现麻烦而且在并发的时候可能会有问题,这时用mysql的DUPLICATE KEY 很方便 用法如下: INSERT INTO ...

  8. 关于chroot

    1 chroot做了什么 chroot只是修改了所有的path resolution过程,也就是说,chroot之后,所有的命令和库的根目录都是chroot到的目录. 2 chroot使用的条件 目标 ...

  9. 数据库连接池-配置 wallfilter问题解决-UncategorizedSQLException

    wallFilter对sql有着严格的校验,会对有风险的sql过滤,抛出异常信息: org.springframework.jdbc.UncategorizedSQLException: ### Er ...

  10. ubuntu16.04和服务器 caffe 安装

    在centos6.X上安装caffe 0.编译安装gcc4.8.5 由于centos6.x中的gcc版本老旧,不支持c++11所以要安装gcc4.8.5,以下是安装教程.参考CentOS 6.4 编译 ...