295 Find Median from Data Stream 数据流的中位数
中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中增加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/
Java实现:
参考:https://www.cnblogs.com/Liok3187/p/4928667.html
O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。
class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
C++实现:
方法一:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法二:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法三:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法四:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
参考:https://blog.csdn.net/sjt19910311/article/details/50883735
https://www.cnblogs.com/grandyang/p/4896673.html
295 Find Median from Data Stream 数据流的中位数的更多相关文章
- [leetcode]295. Find Median from Data Stream数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)
295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...
- 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)
注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...
- [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 【LeetCode】295. Find Median from Data Stream 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...
- 295. Find Median from Data Stream
题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...
- leetcode@ [295]Find Median from Data Stream
https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...
- [LC] 295. Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode——295. Find Median from Data Stream
一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...
随机推荐
- 我的arcgis培训照片4 来自http://www.cioiot.com/successview-549-1.html
- How to force immediate stop of threads in Jmeter servers如何在jmeter执行完,立即停止jmeter
https://stackoverflow.com/questions/38900315/how-to-force-immediate-stop-of-threads-in-jmeter-server ...
- centos7容量扩充
新买的2T 绿盘到货了~~好开心的说~但毕竟是第一次安装,事先还是在网上搜索了很多资料才敢动手,下面就开始啦~ 环境:Centos7.dell服务器.2T容量绿盘 1.硬盘连接好之后,开机先使用fdi ...
- Erlang 又生虫了
好久不玩Erlang了.近期想鼓捣Eresye,下了个最新版OTP 17,结果.发现了问题. 安装这个最新版的Erlang (erl 6.0)后,用erlc编译了Eresye 1.2.5,并放入其li ...
- 查看yarn当前执行任务列表
Author: kwu 查看yarn当前执行任务列表.可使用例如以下命令查看: yarn application -list 如需杀死当前某个作业,使用kill application-id的命令例如 ...
- vue中slot的笔记
一言以蔽之:本来写在子组件里边的内容默认是不显示的,如果想相对于子组件在哪里进行显示,则使用slot标签代表占位符,代替那部分内容,是行间元素还是块级元素取决于原先的那个标签. 参考的连接是:http ...
- win7下 sublime text2操作快捷键 - leafu
Ctrl+L 选择整行(按住-继续选择下行) Ctrl+KK 从光标处删除至行尾 ...
- HDU 1231——最大连续子序列(DP)
最大连续子序列 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- Netty In Action中文版 - 第四章:Transports(传输)
本章内容 Transports(传输) NIO(non-blocking IO,New IO), OIO(Old IO,blocking IO), Local(本地), Embedded(嵌入式) U ...
- Ubuntu虚拟机安装遇到的各种坑
配置 13年Macbook Pro 虚拟机环境 Parallels Desktop Linux 版本 Ubuntu 16.04 1.分辨率问题 进入只有一种分辨率 终端输入 sudo xdiagnos ...