295 Find Median from Data Stream 数据流的中位数
中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中增加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/
Java实现:
参考:https://www.cnblogs.com/Liok3187/p/4928667.html
O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。
class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
C++实现:
方法一:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法二:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法三:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法四:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
参考:https://blog.csdn.net/sjt19910311/article/details/50883735
https://www.cnblogs.com/grandyang/p/4896673.html
295 Find Median from Data Stream 数据流的中位数的更多相关文章
- [leetcode]295. Find Median from Data Stream数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)
295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...
- 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)
注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...
- [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 【LeetCode】295. Find Median from Data Stream 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...
- 295. Find Median from Data Stream
题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...
- leetcode@ [295]Find Median from Data Stream
https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...
- [LC] 295. Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode——295. Find Median from Data Stream
一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...
随机推荐
- Google Protocol Buffer 的使用(二)
一.protobuf应用场景 protobuf 在Java中的应用场景可以是序列化和反序列化,流可以通过文件或者通过网络TCP/UDP等方式传输.新建一个.proto文件 syntax = " ...
- P1165 日志分析 洛谷
https://www.luogu.org/problem/show?pid=1165 题目描述 M 海运公司最近要对旗下仓库的货物进出情况进行统计.目前他们所拥有的唯一记录就是一个记录集装箱进出情况 ...
- Spring基础入门(一)
一.Spring概念 1.什么是Spring Spring是一个开源框架,它由Rod Johnson创建.它是为了解决企业应用开发的复杂性而创建的.Spring使用基本的JavaBean来完成以前 ...
- Tutorial: Synchronizing State with Mutexes in Go
go语言中用mutex实现状态同步. 原文:https://kylewbanks.com/blog/tutorial-synchronizing-state-with-mutexes-golang - ...
- HDU - 3584 Cube (三维树状数组 + 区间改动 + 单点求值)
HDU - 3584 Cube Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Subm ...
- ubuntu11.04 编译ffmpeg2.7 并生成 ffplay进行流媒体測试
源代码安装方式: 1. 先下载ffmpeg 安装包 到官网上 http://ffmpeg.org/download.html#releases 下载.选择Download gzip tarball. ...
- Android 4.4环境搭建——配置AVD模拟器
AVD(Android Virtual Device)即Android模拟器,它是Android官方提供的一个能够执行Android程序的虚拟机,在执行Android程序之前,首先须要创建AVD模拟器 ...
- Hadoop之——HBASE结合MapReduce批量导入数据
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46463889 废话不多说.直接上代码,你懂得 package hbase; imp ...
- hdu 1258 Sum It Up (dfs+路径记录)
pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- Kernel Live-patching (by quqi99)
作者:张华 发表于:2016-02-27 版权声明:能够随意转载.转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 ( http://blog.csdn.net/quqi99 ) GC ...